Generation of the Sun's magnetic fields by self-inductive processes in the solar electrically conducting interior, the solar dynamo theory, is a fundamentally important subject in astrophysics. The kinematic dynam...Generation of the Sun's magnetic fields by self-inductive processes in the solar electrically conducting interior, the solar dynamo theory, is a fundamentally important subject in astrophysics. The kinematic dynamo theory concerns how the magnetic fields are produced by kinematically possible flows without being constrained by the dynamic equation. We review a number of basic aspects of the kinematic dynamo theory, including the magnetohydrodynamic approximation for the dynamo equation, the impossibility of dynamo action with the solar differential rotation, the Cowling's anti-dynamo theorem in the solar context, the turbulent alpha effect and recently constructed three-dimensional interface dynamos controlled by the solar tachocline at the base of the convection zone.展开更多
Solar magnetic activity is expressed via variations of sunspots and active regions varying on different timescales. The most accepted is an 11-year period supposedly induced by the electromagnetic solar dynamo mechani...Solar magnetic activity is expressed via variations of sunspots and active regions varying on different timescales. The most accepted is an 11-year period supposedly induced by the electromagnetic solar dynamo mechanism. There are also some shorter or longer timescales detected: the biennial cycle (2 - 2.7 years), Gleisberg cycle (80 - 100 years), and Hallstatt’s cycle (2100 - 2300 years). Recently, using Principal Component Analysis (PCA) of the observed solar background magnetic field (SBMF), another period of 330 - 380 years, or Grand Solar Cycle (GSC), was derived from the summary curve of two eigenvectors of SBMF. In this paper, a spectral analysis of the averaged sunspot numbers, solar irradiance, and the summary curve of eigenvectors of SBMF was carried out using Morlet wavelet and Fourier transforms. We detect a 10.7-year cycle from the sunspots and modulus summary curve of eigenvectors as well a 22-year-cycle and the grand solar cycle of 342 - 350-years from the summary curve of eigenvectors. The Gleissberg centennial cycle is only detected on the full set of averaged sunspot numbers for 400 years or by adding a quadruple component to the summary curve of eigenvectors. Another period of 2200 - 2300 years is detected in the Holocene data of solar irradiance measured from the abundance of 14C isotope. This period was also confirmed with the period of about 2000 - 2100 years derived from a baseline of the solar background magnetic field, supposedly, caused by the solar inertial motion (SIM) induced by the gravitation of large planets. The implication of these findings for different deposition of solar radiation into the northern and southern hemispheres of the Earth caused by the combined effects of the solar activity and solar inertial motion on the terrestrial atmosphere is also discussed.展开更多
In this review, we discuss whether the present solar dynamo models can be extrapolated to explain various aspects of stellar activity. We begin with a summary of the following kinds of data for solar-like stars:(i) da...In this review, we discuss whether the present solar dynamo models can be extrapolated to explain various aspects of stellar activity. We begin with a summary of the following kinds of data for solar-like stars:(i) data pertaining to stellar cycles from Ca H/K emission over many years;(ii) X-ray data indicating hot coronal activity;(iii) starspot data(especially about giant polar spots); and(iv) data pertaining to stellar superflares. Then we describe the current status of solar dynamo modelling—giving an introduction to the flux transport dynamo model, the currently favoured model for the solar cycle. While an extrapolation of this model to solar-like stars can explain some aspects of observational data, some other aspects of the data still remain to be theoretically explained. It is not clear right now whether we need a different kind of dynamo mechanism for stars having giant starspots or producing very strong superflares.展开更多
Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing directi...Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature’s observed autonomous oscillators, examples are the quasi-biennial oscillation of the atmosphere and the 22- year solar oscillation [1]. Numerical models simulate the oscillations, and we discuss the nonlinearities that are involved. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity. The human heart also functions autonomously, and physiological arguments support the picture that the heart is a nonlinear oscillator.展开更多
We derive the viscous current in the fully ionized two-fluid plasma to generate the solar magnetic field. The global magnetic field of the Sun can be simulated by the viscous current from the differential rotation ins...We derive the viscous current in the fully ionized two-fluid plasma to generate the solar magnetic field. The global magnetic field of the Sun can be simulated by the viscous current from the differential rotation inside the Sun. The field presents a structure with 6-polar. As the viscous current is very weak, the magnetic field intensity is only about G, which could be considered as the background field of the Sun. The theory is a start for the generation of solar magnetic field. The local strong magnetic field of the Sun is not considered in the paper.展开更多
This paper summarizes current helicity measurements in the solar active regions (ARs). There is a basic agreement with the "hemispheric sign rule (HSR)" of the current helicity among different vector magneto...This paper summarizes current helicity measurements in the solar active regions (ARs). There is a basic agreement with the "hemispheric sign rule (HSR)" of the current helicity among different vector magnetographs through two solar cycles, but there is a large dispersion of the fraction of ARs following the HSR. In our sample, there are 50%-78% ARs in solar cycle 22 and 44%-79% ARs in cycle 23 following the HSR. A variation is also found in the fraction of the ARs following the HSR between different instruments even when the same ARs are selected. The difference also exists for the same instrument when the selected ARs are different. There are some differences in the variation of HSR with solar cycle for the individual helicity parameter inferred from different instruments. Factors which influence the correlation of different data sets are analyzed.展开更多
基金Supported by the National Natural Science Foundation of China and UK Royal Society grant.
文摘Generation of the Sun's magnetic fields by self-inductive processes in the solar electrically conducting interior, the solar dynamo theory, is a fundamentally important subject in astrophysics. The kinematic dynamo theory concerns how the magnetic fields are produced by kinematically possible flows without being constrained by the dynamic equation. We review a number of basic aspects of the kinematic dynamo theory, including the magnetohydrodynamic approximation for the dynamo equation, the impossibility of dynamo action with the solar differential rotation, the Cowling's anti-dynamo theorem in the solar context, the turbulent alpha effect and recently constructed three-dimensional interface dynamos controlled by the solar tachocline at the base of the convection zone.
文摘Solar magnetic activity is expressed via variations of sunspots and active regions varying on different timescales. The most accepted is an 11-year period supposedly induced by the electromagnetic solar dynamo mechanism. There are also some shorter or longer timescales detected: the biennial cycle (2 - 2.7 years), Gleisberg cycle (80 - 100 years), and Hallstatt’s cycle (2100 - 2300 years). Recently, using Principal Component Analysis (PCA) of the observed solar background magnetic field (SBMF), another period of 330 - 380 years, or Grand Solar Cycle (GSC), was derived from the summary curve of two eigenvectors of SBMF. In this paper, a spectral analysis of the averaged sunspot numbers, solar irradiance, and the summary curve of eigenvectors of SBMF was carried out using Morlet wavelet and Fourier transforms. We detect a 10.7-year cycle from the sunspots and modulus summary curve of eigenvectors as well a 22-year-cycle and the grand solar cycle of 342 - 350-years from the summary curve of eigenvectors. The Gleissberg centennial cycle is only detected on the full set of averaged sunspot numbers for 400 years or by adding a quadruple component to the summary curve of eigenvectors. Another period of 2200 - 2300 years is detected in the Holocene data of solar irradiance measured from the abundance of 14C isotope. This period was also confirmed with the period of about 2000 - 2100 years derived from a baseline of the solar background magnetic field, supposedly, caused by the solar inertial motion (SIM) induced by the gravitation of large planets. The implication of these findings for different deposition of solar radiation into the northern and southern hemispheres of the Earth caused by the combined effects of the solar activity and solar inertial motion on the terrestrial atmosphere is also discussed.
基金provided by the J C Bose Fellowship awarded by the Department of Science and Technology, Government of India
文摘In this review, we discuss whether the present solar dynamo models can be extrapolated to explain various aspects of stellar activity. We begin with a summary of the following kinds of data for solar-like stars:(i) data pertaining to stellar cycles from Ca H/K emission over many years;(ii) X-ray data indicating hot coronal activity;(iii) starspot data(especially about giant polar spots); and(iv) data pertaining to stellar superflares. Then we describe the current status of solar dynamo modelling—giving an introduction to the flux transport dynamo model, the currently favoured model for the solar cycle. While an extrapolation of this model to solar-like stars can explain some aspects of observational data, some other aspects of the data still remain to be theoretically explained. It is not clear right now whether we need a different kind of dynamo mechanism for stars having giant starspots or producing very strong superflares.
文摘Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature’s observed autonomous oscillators, examples are the quasi-biennial oscillation of the atmosphere and the 22- year solar oscillation [1]. Numerical models simulate the oscillations, and we discuss the nonlinearities that are involved. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity. The human heart also functions autonomously, and physiological arguments support the picture that the heart is a nonlinear oscillator.
文摘We derive the viscous current in the fully ionized two-fluid plasma to generate the solar magnetic field. The global magnetic field of the Sun can be simulated by the viscous current from the differential rotation inside the Sun. The field presents a structure with 6-polar. As the viscous current is very weak, the magnetic field intensity is only about G, which could be considered as the background field of the Sun. The theory is a start for the generation of solar magnetic field. The local strong magnetic field of the Sun is not considered in the paper.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10611120338, 10473016, 10673016, 60673158, 10733020, and10978015)the National Basic Research Program of China (Grant No. 2006CB806301)the Important Directional Project of Chinese Academy of Sciences (Grant No. KLCX2-YW-T04)
文摘This paper summarizes current helicity measurements in the solar active regions (ARs). There is a basic agreement with the "hemispheric sign rule (HSR)" of the current helicity among different vector magnetographs through two solar cycles, but there is a large dispersion of the fraction of ARs following the HSR. In our sample, there are 50%-78% ARs in solar cycle 22 and 44%-79% ARs in cycle 23 following the HSR. A variation is also found in the fraction of the ARs following the HSR between different instruments even when the same ARs are selected. The difference also exists for the same instrument when the selected ARs are different. There are some differences in the variation of HSR with solar cycle for the individual helicity parameter inferred from different instruments. Factors which influence the correlation of different data sets are analyzed.