In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA1...In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA12-PTMO)/AgBF4 composite membranes is investigated. For PEI/Pebax2533/AgBF4 composite membranesprepared with dillerent AgBF4 concentration, the permeances of propylene and ethylene increase with the increase of AgBF4 concentration due to the carrier-facilitated transport, resulting in a high selectivity. But for propyl- ene/propane mixture, the mixed-gas selectivity is lower than its ideal selectivity. The hydrogen reduction strongly influences the membrane performance, which causes the decrease of propylene permeance and the increase of pro-pane permeance. With the increase of hydrogen reduction time, the membranes show a clearly color change from white to brown, yielding a great selectivity loss. The data of X-ray diffraction and FT-IR prove that silver ions are reduced to Ago after hydrogen reduction, and aggregated on the surface of PEI/Pebax2533/AgBF4 composite mem- branes.展开更多
In this paper,the pCO_2 sensitive electrode was studied for continuous measurement.The solid electrolyte membrane and gas-permeable membrane were coated on the surface of the pH sensitive electrode which was fabricate...In this paper,the pCO_2 sensitive electrode was studied for continuous measurement.The solid electrolyte membrane and gas-permeable membrane were coated on the surface of the pH sensitive electrode which was fabricated based on the SnO_2/ITO glass substrate.According to the experimental results,the pCO_2 sensitive electrode shows the sensitivity of about 35 mV/decade in detection range between 0.1 mmol/L and 50 mmol/L.Moreover,the investigated sensing structure exhibits the convenient and pragmatic properties of the pCO_2 measurement.In summary,the advantages of the pCO_2 sensitive electrode are low-cost and disposable based on the separative structure.展开更多
基金Supported by the National Natural Science Foundation of China (20776137) and the National High Technology Research and Develooment Prozram of China (2008AA06Z325).
文摘In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA12-PTMO)/AgBF4 composite membranes is investigated. For PEI/Pebax2533/AgBF4 composite membranesprepared with dillerent AgBF4 concentration, the permeances of propylene and ethylene increase with the increase of AgBF4 concentration due to the carrier-facilitated transport, resulting in a high selectivity. But for propyl- ene/propane mixture, the mixed-gas selectivity is lower than its ideal selectivity. The hydrogen reduction strongly influences the membrane performance, which causes the decrease of propylene permeance and the increase of pro-pane permeance. With the increase of hydrogen reduction time, the membranes show a clearly color change from white to brown, yielding a great selectivity loss. The data of X-ray diffraction and FT-IR prove that silver ions are reduced to Ago after hydrogen reduction, and aggregated on the surface of PEI/Pebax2533/AgBF4 composite mem- branes.
文摘In this paper,the pCO_2 sensitive electrode was studied for continuous measurement.The solid electrolyte membrane and gas-permeable membrane were coated on the surface of the pH sensitive electrode which was fabricated based on the SnO_2/ITO glass substrate.According to the experimental results,the pCO_2 sensitive electrode shows the sensitivity of about 35 mV/decade in detection range between 0.1 mmol/L and 50 mmol/L.Moreover,the investigated sensing structure exhibits the convenient and pragmatic properties of the pCO_2 measurement.In summary,the advantages of the pCO_2 sensitive electrode are low-cost and disposable based on the separative structure.