The carrier synchronization algorithm of the autonomous radio for deep space is studied.When the signal modulation is unknown,this paper improves the existing universal carrier synchronization loop for multiple modula...The carrier synchronization algorithm of the autonomous radio for deep space is studied.When the signal modulation is unknown,this paper improves the existing universal carrier synchronization loop for multiple modulations,expands the frequency tracking range of the loop,proposes a Tong detection-based M-ary Phase Shift Keying(M-PSK)signal locking detection algorithm to rapidly and effectively determine whether the current phase discrimination mode matches the modulation mode,so as to independently choose whether to switch the phase discrimination mode.Through theoretical analysis and comparison,it is described that the total detection probability of the algorithm proposed in this paper is significantly higher than the probability of single lock detection.Simulation results show that the algorithm has high detection probabiUty and low computational complexity at a low signal to noise ratio.展开更多
Compared with common near space satellite Telemetry,Telecommand,and Communication(TT&C),deep space TT&C presents a more challenging environment such as long distance,very low Signal to Noise Ratio(SNR).How to ...Compared with common near space satellite Telemetry,Telecommand,and Communication(TT&C),deep space TT&C presents a more challenging environment such as long distance,very low Signal to Noise Ratio(SNR).How to acquire main carrier exactly becomes a hot focus for deep space communications.Already there emerged some main carrier acquisition algorithms,but they all require high SNR and small modulation index.In this paper,we develop a new acquire algorithm.First we use the spectral energy center algorithm to shorten the original sequence,filter out some noise and make the spectral more symmetric.Then we adopt the spectral symmetry algorithm to make full use of the whole spectrum information,and utilize FFT to reduce computation complexity.Simulation results show that our algorithm can acquire main carrier successfully under large modulation index and get good performance with low Carrier to Noise Ratio(CNR).展开更多
The polarization effect introduced by electric field deformation is the most important bottleneck of CdZnTe detector in x-ray imaging. Currently, most of studies focus on electric field deformation caused by trapped c...The polarization effect introduced by electric field deformation is the most important bottleneck of CdZnTe detector in x-ray imaging. Currently, most of studies focus on electric field deformation caused by trapped carriers;the perturbation of electric field due to drifting carriers has been rarely reported. In this study, the effect of transient space-charge perturbation on carrier transport in a CdZnTe semiconductor is evaluated by using the laser-beam-induced current(LBIC) technique.Cusps appear in the current curves of CdZnTe detectors with different carrier transport performances under intense excitation, indicating the deformation of electric field. The current signals under different excitations are compared. The results suggest that with the increase of excitation, the amplitude of cusp increases and the electron transient time gradually decreases. The distortion in electric field is independent of carrier transport performance of detector. Transient space-charge perturbation is responsible for the pulse shape and affects the carrier transport process.展开更多
机载雷达下视工作面临严重的地海杂波,雷达平台运动造成杂波多普勒频率严重扩散,将微弱目标完全淹没。空时自适应处理(space time adaptive processing,STAP)技术通过联合多天线脉冲的接收信号,能够有效地抑制杂波,实现运动目标检测。...机载雷达下视工作面临严重的地海杂波,雷达平台运动造成杂波多普勒频率严重扩散,将微弱目标完全淹没。空时自适应处理(space time adaptive processing,STAP)技术通过联合多天线脉冲的接收信号,能够有效地抑制杂波,实现运动目标检测。对于非正侧视阵列高速平台雷达,杂波距离依赖和距离模糊严重制约着目标检测性能。基于多载频频控阵,通过发射一组载频不同的正交信号,在杂波回波中,获得新的发射维自由度,并根据不同模糊在发射维的差异分离各模糊区域。此外,通过进一步对分离后的近程进行杂波补偿,利用降维STAP实现杂波抑制。仿真结果验证了所提方法的有效性。展开更多
Equipment has been designed and created for experimental simulation of space environment conditions of Geostationary orbit of the Earth. The following conditions are supported in the vacuum chamber having volume of 1....Equipment has been designed and created for experimental simulation of space environment conditions of Geostationary orbit of the Earth. The following conditions are supported in the vacuum chamber having volume of 1.2 cubic meters: Vacuum 10-5 Torr. (1.3 × 10-3 Pa), electron beam with energy up to 8 MeV, temperatures from -150°C to +150°C and solar ultraviolet radiation. The peculiarity of this equipment is the possibility of analyzing complex simultaneous influence of mentioned above 4 factors on the sample and in-situ direct measurement of sample parameters under irradiation which provides almost real conditions. Silicon single crystals used in space environment were tested in the vacuum chamber and new results were received having scientific and applied interest. It was shown, particularly, that the electro-conductivity of silicon samples has higher value at in-situ condition than ex-situ after irradiation.展开更多
基金Supported by Program for New Century Excellent Talents in University(NCET-12-0030)National Natural Science Foundation of China(91438116)
文摘The carrier synchronization algorithm of the autonomous radio for deep space is studied.When the signal modulation is unknown,this paper improves the existing universal carrier synchronization loop for multiple modulations,expands the frequency tracking range of the loop,proposes a Tong detection-based M-ary Phase Shift Keying(M-PSK)signal locking detection algorithm to rapidly and effectively determine whether the current phase discrimination mode matches the modulation mode,so as to independently choose whether to switch the phase discrimination mode.Through theoretical analysis and comparison,it is described that the total detection probability of the algorithm proposed in this paper is significantly higher than the probability of single lock detection.Simulation results show that the algorithm has high detection probabiUty and low computational complexity at a low signal to noise ratio.
基金Supported by the National Natural Science Foundation of China (No. 61032003 and No. 61021001)
文摘Compared with common near space satellite Telemetry,Telecommand,and Communication(TT&C),deep space TT&C presents a more challenging environment such as long distance,very low Signal to Noise Ratio(SNR).How to acquire main carrier exactly becomes a hot focus for deep space communications.Already there emerged some main carrier acquisition algorithms,but they all require high SNR and small modulation index.In this paper,we develop a new acquire algorithm.First we use the spectral energy center algorithm to shorten the original sequence,filter out some noise and make the spectral more symmetric.Then we adopt the spectral symmetry algorithm to make full use of the whole spectrum information,and utilize FFT to reduce computation complexity.Simulation results show that our algorithm can acquire main carrier successfully under large modulation index and get good performance with low Carrier to Noise Ratio(CNR).
基金Project supported by the National Natural Science Foundation of China(Grant No.61874089)the Fund of MIIT(Grant No.MJ-2017-F-05)+2 种基金the 111 Project of China(Grant No.B08040)the NPU Foundation for Fundamental Research,Chinathe Research Found of the State Key Laboratory of Solidification Processing(NWPU),China
文摘The polarization effect introduced by electric field deformation is the most important bottleneck of CdZnTe detector in x-ray imaging. Currently, most of studies focus on electric field deformation caused by trapped carriers;the perturbation of electric field due to drifting carriers has been rarely reported. In this study, the effect of transient space-charge perturbation on carrier transport in a CdZnTe semiconductor is evaluated by using the laser-beam-induced current(LBIC) technique.Cusps appear in the current curves of CdZnTe detectors with different carrier transport performances under intense excitation, indicating the deformation of electric field. The current signals under different excitations are compared. The results suggest that with the increase of excitation, the amplitude of cusp increases and the electron transient time gradually decreases. The distortion in electric field is independent of carrier transport performance of detector. Transient space-charge perturbation is responsible for the pulse shape and affects the carrier transport process.
文摘机载雷达下视工作面临严重的地海杂波,雷达平台运动造成杂波多普勒频率严重扩散,将微弱目标完全淹没。空时自适应处理(space time adaptive processing,STAP)技术通过联合多天线脉冲的接收信号,能够有效地抑制杂波,实现运动目标检测。对于非正侧视阵列高速平台雷达,杂波距离依赖和距离模糊严重制约着目标检测性能。基于多载频频控阵,通过发射一组载频不同的正交信号,在杂波回波中,获得新的发射维自由度,并根据不同模糊在发射维的差异分离各模糊区域。此外,通过进一步对分离后的近程进行杂波补偿,利用降维STAP实现杂波抑制。仿真结果验证了所提方法的有效性。
文摘Equipment has been designed and created for experimental simulation of space environment conditions of Geostationary orbit of the Earth. The following conditions are supported in the vacuum chamber having volume of 1.2 cubic meters: Vacuum 10-5 Torr. (1.3 × 10-3 Pa), electron beam with energy up to 8 MeV, temperatures from -150°C to +150°C and solar ultraviolet radiation. The peculiarity of this equipment is the possibility of analyzing complex simultaneous influence of mentioned above 4 factors on the sample and in-situ direct measurement of sample parameters under irradiation which provides almost real conditions. Silicon single crystals used in space environment were tested in the vacuum chamber and new results were received having scientific and applied interest. It was shown, particularly, that the electro-conductivity of silicon samples has higher value at in-situ condition than ex-situ after irradiation.