期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury 被引量:2
1
作者 Kazuo Hayakawa Christopher Haas Itzhak Fischer 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期529-533,共5页
In the aftermath of spinal cord injury,glial restricted precursors(GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regenera... In the aftermath of spinal cord injury,glial restricted precursors(GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regeneration.Nevertheless clinical application of cellular therapy for the repair of spinal cord injury requires strict quality-assured protocols for large-scale production and preservation that necessitates long-term in vitro expansion.Importantly,such processes have the potential to alter the phenotypic and functional properties and thus therapeutic potential of these cells.Furthermore,clinical use of cellular therapies may be limited by the inflammatory microenvironment of the injured spinal cord,altering the phenotypic and functional properties of grafted cells.This report simulates the process of large-scale GRP production and demonstrates the permissive properties of GRP following long-term in vitro culture.Furthermore,we defined the phenotypic and functional properties of GRP in the presence of inflammatory factors,and call attention to the importance of the microenvironment of grafted cells,underscoring the importance of modulating the environment of the injured spinal cord. 展开更多
关键词 glial restricted precursor spinal cord injury astrocytes axon regeneration inflammatory factors long-term culture
下载PDF
Effect of glial cells on remyelination after spinal cord injury 被引量:9
2
作者 Hai-feng Wang Xing-kai Liu +10 位作者 Rui Li Ping Zhang Ze Chu Chun-li Wang Hua-rui Liu Jun Qi Guo-yue Lv Guang-yi Wang Bin Liu Yan Li Yuan-yi Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1724-1732,共9页
Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesi... Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesion site are immediately activated,and different cells differentially affect inflammatory reactions after injury.In this review,we aim to discuss the core role of oligodendrocyte precursor cells and crosstalk with the rest of glia and their subcategories in the remyelination process.Activated astrocytes influence proliferation,differentiation,and maturation of oligodendrocyte precursor cells,while activated microglia alter remyelination by regulating the inflammatory reaction after spinal cord injury.Understanding the interaction between oligodendrocyte precursor cells and the rest of glia is necessary when designing a therapeutic plan of remyelination after spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury remyelination oligodendrocyte precursor cells astrocytes oligodendrocytes microglia glial scar demyelination myelin central nervous system neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部