Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processe...Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processes modify those fluxes under TC conditions have not been sufficiently investigated based on in-situ observations.Using continuous meteorological and surface wave data from a moored buoy in the northern South China Sea,this study examines the effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. The mooring was within about 40 km of the center of Hagupit. Surface waves could increase momentum flux to the ocean by about 15%, and sea spray enhanced both sensible and latent heat fluxes to the atmosphere,causing Hagupit to absorb 500 W/m^2 more heat flux from the ocean. These results have powerful implications for understanding TC–ocean interaction and improving TC intensity forecasting.展开更多
An experiment was carried out to investigate the relation of the maximum velocity of air passing through narrowest passage, mass flux of spray water in one square meter in one hour and the pressure drop of tube bundle...An experiment was carried out to investigate the relation of the maximum velocity of air passing through narrowest passage, mass flux of spray water in one square meter in one hour and the pressure drop of tube bundles. Twelve equations were obtained for the relation. The results show that the pressure drop of the tube bundles increases with increase of the maximum velocity of air and the mass flux of spray water. Comparing the pressure drop of the bare tube bundles with that of the film-enhanced tube bundles, it is found that the pressure drop of the film-enhanced tube bundles is lower about 11% and the surface roughness of the film-enhanced plates is a main factor that influences the pressure drop. The data and method obtained in the paper can be used to compute the pressure drop of the film-enhanced tube bundles and is helpful for selection of fan.展开更多
基金Zhejiang Provincial Natural Science Foundation of China under contract No.LR15D060001the National Program on Global Change and Air-Sea Interactions under contract No.GASI-IPOVAI-04the National Natural Science Foundation of China under contract Nos 41476021,41706034 and 41321004
文摘Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processes modify those fluxes under TC conditions have not been sufficiently investigated based on in-situ observations.Using continuous meteorological and surface wave data from a moored buoy in the northern South China Sea,this study examines the effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. The mooring was within about 40 km of the center of Hagupit. Surface waves could increase momentum flux to the ocean by about 15%, and sea spray enhanced both sensible and latent heat fluxes to the atmosphere,causing Hagupit to absorb 500 W/m^2 more heat flux from the ocean. These results have powerful implications for understanding TC–ocean interaction and improving TC intensity forecasting.
基金Acknowledgement: The study is supported by the National Nature Science Foundation. Patent code is 200620098211.4.
文摘An experiment was carried out to investigate the relation of the maximum velocity of air passing through narrowest passage, mass flux of spray water in one square meter in one hour and the pressure drop of tube bundles. Twelve equations were obtained for the relation. The results show that the pressure drop of the tube bundles increases with increase of the maximum velocity of air and the mass flux of spray water. Comparing the pressure drop of the bare tube bundles with that of the film-enhanced tube bundles, it is found that the pressure drop of the film-enhanced tube bundles is lower about 11% and the surface roughness of the film-enhanced plates is a main factor that influences the pressure drop. The data and method obtained in the paper can be used to compute the pressure drop of the film-enhanced tube bundles and is helpful for selection of fan.