Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte...Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.展开更多
The process parameters of laser additive manufacturing have an important influence on the forming quality of the produced items or parts.In the present work,a finite element model for simulating transient heat transfe...The process parameters of laser additive manufacturing have an important influence on the forming quality of the produced items or parts.In the present work,a finite element model for simulating transient heat transfer in such processes has been implemented using the ANSYS software,and the temperature and stress distributions related to 316L stainless steel thin-walled ring parts have been simulated and analyzed.The effect of the laser power,scanning speed,and scanning mode on temperature distribution,molten pool structure,deformation,and stress field has been studied.The simulation results show that the peak temperature,weld pool size,deformation,and residual stress increase with an increase in laser power and a decrease in the scanning speed.The scanning mode has no obvious effect on temperature distribution,deformation,and residual stress.In addition,a forming experiment was carried out.The experimental results show that the samples prepared by laser power P=800 W,V=6 mm/s,and the normal scanning method display good quality,whereas the samples prepared under other parameters have obvious defects.The experimental findings are consistent with the simulation results.展开更多
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o...In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.展开更多
In order to improve corrosion resistance of stainless steel 316L in warm acidic solution, Ni?Cu?P coatings with high copper and phosphorus contents were deposited onto stainless steel 316L substrates via electroless...In order to improve corrosion resistance of stainless steel 316L in warm acidic solution, Ni?Cu?P coatings with high copper and phosphorus contents were deposited onto stainless steel 316L substrates via electroless plating. The structure of the film and its resistance to corrosion in a warm acidic environment were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction spectrometry (XRD), polarization curves, electrochemical impedance spectroscopy (EIS), and dipping corrosion tests, respectively. The results demonstrate that Ni?Cu?P coatings consist of two types of nodules, which are 19.98% Cu and 39.17% Cu (mass fraction) respectively. The corrosion resistance of the 316L substrate when subjected to a warm acidic solution is significantly improved by the addition of the new type of the Ni?Cu?P coating. The as-plated coatings demonstrate better corrosion resistance than annealed coatings. As-plated coatings and those annealed at 673 K are found to corrode selectively, while pitting is observed to be the main corrosion mechanism of coatings annealed at 773 and 873 K.展开更多
The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile exper...The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.展开更多
This study is conducted to develop an innovative and attractive selective laser melting(SLM)method to produce 316 L stainless steel materials with excellent mechanical performance and complex part shape.In this work,t...This study is conducted to develop an innovative and attractive selective laser melting(SLM)method to produce 316 L stainless steel materials with excellent mechanical performance and complex part shape.In this work,the subregional manufacturing strategy,which separates the special parts from the components using an optimized process,was proposed.The results showed that produced 316 L materials exhibited superior strength of^755 MPa and good ductility.In the as-built parts,austenite with preferred orientation of the(220)plane,δ-ferrite,and a small amount of CrO phases were present.In addition,the crystal size was fine,which contributed to the enhancement of the parts’mechanical properties.The structural anisotropy mechanism of the materials was also investigated for a group of half-sized samples with variable inclination directions.This technique was used to fabricate a set of impellers with helical bevels and high-precision planetary gears,demonstrating its strong potential for use in practical applications.展开更多
By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were ...By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were synthesized in 316L stainless steel because of the different distributions of strain and strain rate along depth orientation. For instance the maximum strain rate reached 10^3-10^4s^-1 on the top surface. The relationship between the microsturcture and the corrosion property was studied in 0.05M H2SO4+ 0.25M Na2SO4 aqueous solution, and the results show an extreme improvement of corrosion resistance owing to the appearance of twin boundaries and the obvious reduction in corrosion resistance attributed to the presence of nanocrystaline boundaries.展开更多
Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria (IOB) and anaerobic sulfate-reducing bacteria (SRB) isolated from cooling water system...Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria (IOB) and anaerobic sulfate-reducing bacteria (SRB) isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy (SEM) and energy dispersive atom X-ray analysis(EDAX). The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly in the presence of bacteria, in comparison with those observed in sterile medium under the same exposure time. SEM morphologies have shown that 316L stainless steel reveals no signs of pitting attack in the sterile medium. However, micrometer-scale corrosion pits were observed on 316L stainless steel surface in the presence of bacteria. The presence of SRB leads to higher corrosion rates than IOB. The interactions between the stainless steel surface, abiotic corrosion products, and bacterial cells and their metabolic products increased the corrosion damage degree of the passive film and accelerated pitting propagation.展开更多
This study has evaluated the effect of different levels of cold rolling(from 0 to 50%)on the microstructural,magnetic,and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in Na Cl...This study has evaluated the effect of different levels of cold rolling(from 0 to 50%)on the microstructural,magnetic,and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in Na Cl(1 mol/L)+H_2SO_4(0.5 mol/L)solution.Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process.Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagneticα′-martensite phase under the stresses applied during cold rolling.This finding is in agreement with magnetic measurements using a vibrating sample magnetometer.Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage,representing a reduction in the material’s work-hardening ability.Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy.In contrast to the uniform corrosion,wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects,the passive potential range and breakdown potential increased by cold working,showing greater resistance to pit nucleation.Although pits were formed,the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop,as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.展开更多
Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by...Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by scanning electron microscope and energy dispersive spectrometer.The corrosion resistance of the coating in 0.5 mol/L H2SO4+2×10−6 HF solution was studied by electrochemical method.Surface contact angle was used to test the hydrophobic properties of the coating.The results indicated that the Ni-P/SiC/PTFE coating prepared on the surface of stainless steel was uniform and compact,which significantly improved the self-corrosion potential of stainless steel.The self-corrosion current density decreased from 7.62 to 0.008μA/cm2.The durability performance of coating was tested under 0.6 V voltage and the stable corrosion current density value was 0.19μA/cm2,then wetting angle was tested after durability experiment and the value is 134.5°.展开更多
Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co an...Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co and Pd-Cu plated samples in a simulated boiling pure terephthalic acid(PTA) slurry environment was studied with methods of mass loss test, polarization measurement and scanning electron microscopy(SEM). Under the static state condition, both the Pd-Cu and Pd-Co plated samples exhibit good corrosion resistance and the Pd-Cu film behaves slightly better. However, with increasing the stirring speed, the corrosion rate of the Pd-Cu plated samples increases obviously while that of the Pd-Co plated samples shows only slight increase. Higher microhardness and lower surface roughness of Pd-Co film than those of Pd-Cu film, as well as good corrosion resistance, may be the main reasons for better erosion-corrosion resistance in the strong reductive acid plus erosion environment.展开更多
Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated....Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38% to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS, which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124. 2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0∶3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202.8 MPa and 124.2 MPa, respectively. The (microstructure) and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering.展开更多
The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts ...The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.展开更多
In this work,coarse-grained 316 L stainless steels were cold rolled with a thickness reduction of^83%(CR 83%).After annealing,the behaviors of the nanostructured stainless steel samples were systematically investigate...In this work,coarse-grained 316 L stainless steels were cold rolled with a thickness reduction of^83%(CR 83%).After annealing,the behaviors of the nanostructured stainless steel samples were systematically investigated in the temperatures range of 200C–650C.It was found that with increasing annealing temperature the volume fraction of theα0-martensite first increased to reach a maximum value at 400C,then the volume fraction decreased with further increases of the annealing temperature.The yield strength was increased from 1400 MPa to 1720 MPa after annealing;this strong hardening effect in cold rolled 316 L stainless steel was mainly attributed to the increase of the volume fraction ofα0-martensite.展开更多
A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the...A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the dry green strength were investigated. The results show that gas atomization (GA) powder is more suitable for gelcasting compared with water atomization (WA) powder. The maximum solid loading is 55vo1% for ball-milled slurry with GA powders. And the optimum amounts of monomers (acrylamide (AM)+methylenebisacrylamide (MBAM); the mass ratio, 30:1) and initiator in the AM system are 1.8% (based on the weight of metal powder) and 0.8%-1.4% (based on the weight of monomers), respectively, at which, the maximum green strength obtained is 33.7 MPa. The mechanical properties of the sintered specimen are as follows: ultimate tensile strength, 493 MPa; yield strength, 162 MPa; and HRB, 72.展开更多
The compositions and the chemical valence states of elements of 316L stainless steel passive film formed in the oxidizing acid solution were studied by X-ray Photoelectron Spectroscopic (XPS) analysis. The electrochem...The compositions and the chemical valence states of elements of 316L stainless steel passive film formed in the oxidizing acid solution were studied by X-ray Photoelectron Spectroscopic (XPS) analysis. The electrochemical polarization curve was measured. The passivation process in the oxidizing acid solution was studied by AC impedance technology. The results indicated that the stable compounds layer was formed on the surface of the sample and the adsorption was the main step in the nitrite solution during passivation process. The catalysis passivation mechanism was put forward according to the experimental results. During passivation process, the water molecule was adsorbed on the surface of the sample at first in the oxidizing acid solution. The oxidizer in the solution played a role as catalyst. The oxide and hydroxide, which could be changed each other and finally formed stable passive film, were generated from adsorbing intermediate under the catalytic action. The mathematical models for predicting the steady polarization curve and the AC impedance spectra at certain conditions have been obtained. The passivation mechanism of 316L stainless steel in the oxidizing acid solution can be interpreted by the catalysis passivation mechanism.展开更多
An experimental study was carried out on the strain cyclic characteristics and ratcheting of 316L stainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched ...An experimental study was carried out on the strain cyclic characteristics and ratcheting of 316L stainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tension-compression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the Values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.展开更多
Hot-formed components are constantly exposed to hostile environments with corrosive substances. Microstructural changes caused by thermomechanical processing can be predicted to increase the corrosion resistance of au...Hot-formed components are constantly exposed to hostile environments with corrosive substances. Microstructural changes caused by thermomechanical processing can be predicted to increase the corrosion resistance of austenitic stainless steels. The objective of this study is to understand the relationship between the dynamic softening mechanisms and corrosion resistance, thus optimizing the hot-forming process. In the current work, the dynamic recrystallization (DRX) behavior of AISI 316 L austenitic stainless steel was studied in the temperature range of 1273 - 1423 K and strain-rate range of 0.1 - 5.0 s-1 using physical simulation. Subsequently, potentiodynamic polarization tests and scanning electron microscopy were performed on the hot-deformed samples to investigate the influence of temperature and strain-rate on the corrosion resistance and mechanical properties. The results indicated that the DRX fractions increased under low-temperature and high strain-rate conditions, resulting in grain refinement. The potentiodynamic polarization tests indicated that the dynamically recovered samples demonstrated high resistance to corrosion compared with the DRX samples. The best route found for the investigated alloy was for the strain to be applied at a temperature of 1423 K and a strain rate of 0.1 s-1.展开更多
The effect of Co complexes with a Schiff base ligand on the electrochemical corrosion behavior of 316 L SS in 0.1 M H<sub>2</sub>SO<sub>4</sub> at 25℃ has been investigated at various inhibito...The effect of Co complexes with a Schiff base ligand on the electrochemical corrosion behavior of 316 L SS in 0.1 M H<sub>2</sub>SO<sub>4</sub> at 25℃ has been investigated at various inhibitor concentration using electrochemical techniques (impedance spectroscopy (EIS), polarization curves). Corrosion measurements indicate that Co complex act as moderately inhibitors. Results revealed that increasing the concentration of Co complex increases the corresponding IE% values till 100 ppm. Co complex acts as mixed type inhibitors with predominant effect on the anodic dissolution of iron. Adsorption studies showed that the process follows Langmuir adsorption isotherm.展开更多
316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce o...316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin- film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.展开更多
文摘Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.
基金funded by the National Natural Science Foundation of China(Grant Nos.51975339,51605262)China Postdoctoral Science Foundation(Grant Nos.2019T120602,2017M610439)Youth Innovation and Technology Support Program for University in Shandong Province(Grant No.2019KJB003).
文摘The process parameters of laser additive manufacturing have an important influence on the forming quality of the produced items or parts.In the present work,a finite element model for simulating transient heat transfer in such processes has been implemented using the ANSYS software,and the temperature and stress distributions related to 316L stainless steel thin-walled ring parts have been simulated and analyzed.The effect of the laser power,scanning speed,and scanning mode on temperature distribution,molten pool structure,deformation,and stress field has been studied.The simulation results show that the peak temperature,weld pool size,deformation,and residual stress increase with an increase in laser power and a decrease in the scanning speed.The scanning mode has no obvious effect on temperature distribution,deformation,and residual stress.In addition,a forming experiment was carried out.The experimental results show that the samples prepared by laser power P=800 W,V=6 mm/s,and the normal scanning method display good quality,whereas the samples prepared under other parameters have obvious defects.The experimental findings are consistent with the simulation results.
基金Funded by the National Natural Science Foundation of China(No.51975540)。
文摘In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.
基金Project(CKJA201202)supported by the Innovation Fund Key Project of Nanjing Institute of Technology,ChinaProject(51301088)supported by the National Natural Science Foundation of China
文摘In order to improve corrosion resistance of stainless steel 316L in warm acidic solution, Ni?Cu?P coatings with high copper and phosphorus contents were deposited onto stainless steel 316L substrates via electroless plating. The structure of the film and its resistance to corrosion in a warm acidic environment were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction spectrometry (XRD), polarization curves, electrochemical impedance spectroscopy (EIS), and dipping corrosion tests, respectively. The results demonstrate that Ni?Cu?P coatings consist of two types of nodules, which are 19.98% Cu and 39.17% Cu (mass fraction) respectively. The corrosion resistance of the 316L substrate when subjected to a warm acidic solution is significantly improved by the addition of the new type of the Ni?Cu?P coating. The as-plated coatings demonstrate better corrosion resistance than annealed coatings. As-plated coatings and those annealed at 673 K are found to corrode selectively, while pitting is observed to be the main corrosion mechanism of coatings annealed at 773 and 873 K.
基金financially supported by the Shanghai Materials Genome Institute No. 5 (No. 16DZ2260605)the Shanghai Sailing Program (No. 17YF1405400)the Project to Strengthen Industrial Development at the Grass-roots Level (No. TC160A310/19)
文摘The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.
基金supported by the Key R&D Programs of Sichuan Province of China (No. 2018GZ0145)the Science and Technology Planning Projects of Zigong of Sichuan Province (No. 2018CDZG-1)the Major Scientific and Technological Key Bidding Projects in Panzhihua Experimental Zone (No. 1640STC30166/01)
文摘This study is conducted to develop an innovative and attractive selective laser melting(SLM)method to produce 316 L stainless steel materials with excellent mechanical performance and complex part shape.In this work,the subregional manufacturing strategy,which separates the special parts from the components using an optimized process,was proposed.The results showed that produced 316 L materials exhibited superior strength of^755 MPa and good ductility.In the as-built parts,austenite with preferred orientation of the(220)plane,δ-ferrite,and a small amount of CrO phases were present.In addition,the crystal size was fine,which contributed to the enhancement of the parts’mechanical properties.The structural anisotropy mechanism of the materials was also investigated for a group of half-sized samples with variable inclination directions.This technique was used to fabricate a set of impellers with helical bevels and high-precision planetary gears,demonstrating its strong potential for use in practical applications.
文摘By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were synthesized in 316L stainless steel because of the different distributions of strain and strain rate along depth orientation. For instance the maximum strain rate reached 10^3-10^4s^-1 on the top surface. The relationship between the microsturcture and the corrosion property was studied in 0.05M H2SO4+ 0.25M Na2SO4 aqueous solution, and the results show an extreme improvement of corrosion resistance owing to the appearance of twin boundaries and the obvious reduction in corrosion resistance attributed to the presence of nanocrystaline boundaries.
基金Supported by the National Natural Science Foundation of China (No.20576108).
文摘Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria (IOB) and anaerobic sulfate-reducing bacteria (SRB) isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy (SEM) and energy dispersive atom X-ray analysis(EDAX). The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly in the presence of bacteria, in comparison with those observed in sterile medium under the same exposure time. SEM morphologies have shown that 316L stainless steel reveals no signs of pitting attack in the sterile medium. However, micrometer-scale corrosion pits were observed on 316L stainless steel surface in the presence of bacteria. The presence of SRB leads to higher corrosion rates than IOB. The interactions between the stainless steel surface, abiotic corrosion products, and bacterial cells and their metabolic products increased the corrosion damage degree of the passive film and accelerated pitting propagation.
基金Shahid Chamran University of Ahvaz for supporting this research
文摘This study has evaluated the effect of different levels of cold rolling(from 0 to 50%)on the microstructural,magnetic,and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in Na Cl(1 mol/L)+H_2SO_4(0.5 mol/L)solution.Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process.Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagneticα′-martensite phase under the stresses applied during cold rolling.This finding is in agreement with magnetic measurements using a vibrating sample magnetometer.Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage,representing a reduction in the material’s work-hardening ability.Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy.In contrast to the uniform corrosion,wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects,the passive potential range and breakdown potential increased by cold working,showing greater resistance to pit nucleation.Although pits were formed,the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop,as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.
基金Project(2018YFB1502500)supported by the National Key Research and Development Program of ChinaProject supported by State Key Laboratory of Powder Metallurgy,Central South University,China+1 种基金Projects(2020JJ5100,2018JJ3101)supported by Natural Science Foundation of Hunan Province,ChinaProject(51671085)supported by the National Natural Science Foundation of China。
文摘Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by scanning electron microscope and energy dispersive spectrometer.The corrosion resistance of the coating in 0.5 mol/L H2SO4+2×10−6 HF solution was studied by electrochemical method.Surface contact angle was used to test the hydrophobic properties of the coating.The results indicated that the Ni-P/SiC/PTFE coating prepared on the surface of stainless steel was uniform and compact,which significantly improved the self-corrosion potential of stainless steel.The self-corrosion current density decreased from 7.62 to 0.008μA/cm2.The durability performance of coating was tested under 0.6 V voltage and the stable corrosion current density value was 0.19μA/cm2,then wetting angle was tested after durability experiment and the value is 134.5°.
基金Project(2012BAE04B01) supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China
文摘Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co and Pd-Cu plated samples in a simulated boiling pure terephthalic acid(PTA) slurry environment was studied with methods of mass loss test, polarization measurement and scanning electron microscopy(SEM). Under the static state condition, both the Pd-Cu and Pd-Co plated samples exhibit good corrosion resistance and the Pd-Cu film behaves slightly better. However, with increasing the stirring speed, the corrosion rate of the Pd-Cu plated samples increases obviously while that of the Pd-Co plated samples shows only slight increase. Higher microhardness and lower surface roughness of Pd-Co film than those of Pd-Cu film, as well as good corrosion resistance, may be the main reasons for better erosion-corrosion resistance in the strong reductive acid plus erosion environment.
文摘Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38% to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS, which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124. 2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0∶3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202.8 MPa and 124.2 MPa, respectively. The (microstructure) and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering.
基金the National Key R&D Program of China(Grant No.2018YFB1106100)。
文摘The laser powder bed fusion(L-PBF)method of additive manufacturing(AM)is increasingly used in various industrial manufacturing fields due to its high material utilization and design freedom of parts.However,the parts produced by L-PBF usually contain such defects as crack and porosity because of the technological characteristics of L-PBF,which affect the quality of the product.Laser ultrasonic testing(LUT)is a potential technology for on-line testing of the L-PBF process.It is a non-contact and non-destructive approach based on signals from abundant waveforms with a wide frequency-band.In this study,a method of LUT for on-line inspection of L-PBF process was proposed,and a system of LUT was established approaching the actual environment of on-line detection to evaluate the method applicability for defects detection of L-PBF parts.The detection results of near-surface defects in L-PBF 316L stainless steel parts show that the crack-type defects with a sub-millimeter level within 0.5 mm depth can be identified,and accordingly,the positions and dimensions information can be acquired.The results were verified by X-ray computed tomography,which indicates that the present method exhibits great potential for on-line inspection of AM processes.
基金supported by the National Key R&D Program of China(2017YFA0204403)Natural Science Foundation of Jiangsu Province(BK20191292)+1 种基金the Fundamental Research Funds for the Central Universities(30919011256)the Jiangsu Key Laboratory of Advanced Micro&Nano Materials and Technology.
文摘In this work,coarse-grained 316 L stainless steels were cold rolled with a thickness reduction of^83%(CR 83%).After annealing,the behaviors of the nanostructured stainless steel samples were systematically investigated in the temperatures range of 200C–650C.It was found that with increasing annealing temperature the volume fraction of theα0-martensite first increased to reach a maximum value at 400C,then the volume fraction decreased with further increases of the annealing temperature.The yield strength was increased from 1400 MPa to 1720 MPa after annealing;this strong hardening effect in cold rolled 316 L stainless steel was mainly attributed to the increase of the volume fraction ofα0-martensite.
文摘A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the dry green strength were investigated. The results show that gas atomization (GA) powder is more suitable for gelcasting compared with water atomization (WA) powder. The maximum solid loading is 55vo1% for ball-milled slurry with GA powders. And the optimum amounts of monomers (acrylamide (AM)+methylenebisacrylamide (MBAM); the mass ratio, 30:1) and initiator in the AM system are 1.8% (based on the weight of metal powder) and 0.8%-1.4% (based on the weight of monomers), respectively, at which, the maximum green strength obtained is 33.7 MPa. The mechanical properties of the sintered specimen are as follows: ultimate tensile strength, 493 MPa; yield strength, 162 MPa; and HRB, 72.
文摘The compositions and the chemical valence states of elements of 316L stainless steel passive film formed in the oxidizing acid solution were studied by X-ray Photoelectron Spectroscopic (XPS) analysis. The electrochemical polarization curve was measured. The passivation process in the oxidizing acid solution was studied by AC impedance technology. The results indicated that the stable compounds layer was formed on the surface of the sample and the adsorption was the main step in the nitrite solution during passivation process. The catalysis passivation mechanism was put forward according to the experimental results. During passivation process, the water molecule was adsorbed on the surface of the sample at first in the oxidizing acid solution. The oxidizer in the solution played a role as catalyst. The oxide and hydroxide, which could be changed each other and finally formed stable passive film, were generated from adsorbing intermediate under the catalytic action. The mathematical models for predicting the steady polarization curve and the AC impedance spectra at certain conditions have been obtained. The passivation mechanism of 316L stainless steel in the oxidizing acid solution can be interpreted by the catalysis passivation mechanism.
文摘An experimental study was carried out on the strain cyclic characteristics and ratcheting of 316L stainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tension-compression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the Values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.
文摘Hot-formed components are constantly exposed to hostile environments with corrosive substances. Microstructural changes caused by thermomechanical processing can be predicted to increase the corrosion resistance of austenitic stainless steels. The objective of this study is to understand the relationship between the dynamic softening mechanisms and corrosion resistance, thus optimizing the hot-forming process. In the current work, the dynamic recrystallization (DRX) behavior of AISI 316 L austenitic stainless steel was studied in the temperature range of 1273 - 1423 K and strain-rate range of 0.1 - 5.0 s-1 using physical simulation. Subsequently, potentiodynamic polarization tests and scanning electron microscopy were performed on the hot-deformed samples to investigate the influence of temperature and strain-rate on the corrosion resistance and mechanical properties. The results indicated that the DRX fractions increased under low-temperature and high strain-rate conditions, resulting in grain refinement. The potentiodynamic polarization tests indicated that the dynamically recovered samples demonstrated high resistance to corrosion compared with the DRX samples. The best route found for the investigated alloy was for the strain to be applied at a temperature of 1423 K and a strain rate of 0.1 s-1.
文摘The effect of Co complexes with a Schiff base ligand on the electrochemical corrosion behavior of 316 L SS in 0.1 M H<sub>2</sub>SO<sub>4</sub> at 25℃ has been investigated at various inhibitor concentration using electrochemical techniques (impedance spectroscopy (EIS), polarization curves). Corrosion measurements indicate that Co complex act as moderately inhibitors. Results revealed that increasing the concentration of Co complex increases the corresponding IE% values till 100 ppm. Co complex acts as mixed type inhibitors with predominant effect on the anodic dissolution of iron. Adsorption studies showed that the process follows Langmuir adsorption isotherm.
基金financially supported by NSFC-Guangdong Natural Science Mutual Funds(Item No.U1034002)
文摘316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin- film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.