This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed a...This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed axial compressor with a single rotor.The jet induced by the plasma actuator adds momentum to the flow in the tip region and has a significant impact on the tip-gap flow.Experiments are carried out on a low speed axial compressor with a single rotor.The static pressure is measured at both the rotor inlet and outlet.The flow coefficient and pressure rise coefficient are calculated.Then the characteristic line is acquired to show the overall performance of the compressor.With unsteady plasma actuation of 18kV and 60W the compressor stability range improvement is realized at rotor speed of 1500 r/min – 2400 r/min.展开更多
A numerical study is conducted to investigate the influence of inlet flow condition on tip leakage flow (TLF) and stall margin in a transonic axial rotor.A commercial software package FLUENT,is used in the simulation....A numerical study is conducted to investigate the influence of inlet flow condition on tip leakage flow (TLF) and stall margin in a transonic axial rotor.A commercial software package FLUENT,is used in the simulation.The rotor investigated in this paper is ND_TAC rotor,which is the rotor of one-stage transonic compressor in the University of Notre Dame.Three varied inlet flow conditions are simulated.The inlet boundary condition with hub distortion provides higher axial velocity for the incoming flow near tip region than that for the clean inflow,while the incoming main flow possesses lower axial velocity near the tip region at tip distortion inlet boundary condition.Among the total pressure ratio curves for the three inlet flow conditions,it is found that the hub dis-torted inlet boundary condition improves the stall margin,while the tip distorted inlet boundary condition dete-riorates compressor stability.The axial location of interface between tip leakage flow (TLF) and incoming main flow (MF) in the tip gap and the axial momentum ratio of TLF to MF are further examined.It is demonstrated that the axial momentum balance is the mechanism for interface movement.The hub distorted inflow could de-crease the axial momentum ratio,suppress the movement of the interface between TLF and MF towards blade leading edge plane and thus enhance compressor stability.展开更多
The stall margin of compressor could be improved effectively by rotor tip injection,and the periodic injection is commonly used in the research.The purpose of this work is to investigate the influence of injection fre...The stall margin of compressor could be improved effectively by rotor tip injection,and the periodic injection is commonly used in the research.The purpose of this work is to investigate the influence of injection frequency on the rotor stall margin.An unsteady CFD code was employed to simulate the flow field of the rotor with injections of different frequencies.Comparing the stall margin of the rotor with injections of different frequencies,it is shown that there is an optimal injection frequency,around which the rotor stability enhancement is the largest.When the injection frequency is away form the optimal frequency,the improvement in stable flow range decreases correspondingly.For the rotor in this paper,the optimal frequency was 1.5 times the frequency of tip leakage vortex(for short,TLV) fluctuation.Time-averaged loading distribution at 98.5% span indicates that the loading of the rotor near the leading edge is decreased through injection with the optimal frequency,and therefore,the stall could be delayed.展开更多
基金supported by the National Natural Science Foundation of China,project No.50906085International S&T Cooperation Program of China,project No.2013DFR61080
文摘This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed axial compressor with a single rotor.The jet induced by the plasma actuator adds momentum to the flow in the tip region and has a significant impact on the tip-gap flow.Experiments are carried out on a low speed axial compressor with a single rotor.The static pressure is measured at both the rotor inlet and outlet.The flow coefficient and pressure rise coefficient are calculated.Then the characteristic line is acquired to show the overall performance of the compressor.With unsteady plasma actuation of 18kV and 60W the compressor stability range improvement is realized at rotor speed of 1500 r/min – 2400 r/min.
基金supported by National Natural Science Foundation of China with project No.51010007 and No.51106153
文摘A numerical study is conducted to investigate the influence of inlet flow condition on tip leakage flow (TLF) and stall margin in a transonic axial rotor.A commercial software package FLUENT,is used in the simulation.The rotor investigated in this paper is ND_TAC rotor,which is the rotor of one-stage transonic compressor in the University of Notre Dame.Three varied inlet flow conditions are simulated.The inlet boundary condition with hub distortion provides higher axial velocity for the incoming flow near tip region than that for the clean inflow,while the incoming main flow possesses lower axial velocity near the tip region at tip distortion inlet boundary condition.Among the total pressure ratio curves for the three inlet flow conditions,it is found that the hub dis-torted inlet boundary condition improves the stall margin,while the tip distorted inlet boundary condition dete-riorates compressor stability.The axial location of interface between tip leakage flow (TLF) and incoming main flow (MF) in the tip gap and the axial momentum ratio of TLF to MF are further examined.It is demonstrated that the axial momentum balance is the mechanism for interface movement.The hub distorted inflow could de-crease the axial momentum ratio,suppress the movement of the interface between TLF and MF towards blade leading edge plane and thus enhance compressor stability.
文摘The stall margin of compressor could be improved effectively by rotor tip injection,and the periodic injection is commonly used in the research.The purpose of this work is to investigate the influence of injection frequency on the rotor stall margin.An unsteady CFD code was employed to simulate the flow field of the rotor with injections of different frequencies.Comparing the stall margin of the rotor with injections of different frequencies,it is shown that there is an optimal injection frequency,around which the rotor stability enhancement is the largest.When the injection frequency is away form the optimal frequency,the improvement in stable flow range decreases correspondingly.For the rotor in this paper,the optimal frequency was 1.5 times the frequency of tip leakage vortex(for short,TLV) fluctuation.Time-averaged loading distribution at 98.5% span indicates that the loading of the rotor near the leading edge is decreased through injection with the optimal frequency,and therefore,the stall could be delayed.