Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption...Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.展开更多
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit...The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.展开更多
The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional....The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.展开更多
Under steady-state conditions, the general currents of EE reactions at disk,hemispherical and spherical microelectrodes are derived.From these equations, some electrode reaction parameters can be very simply obtained.
Einstein–Podolski–Rosen(EPR) entanglement state is achievable by combining two single-mode position and momentum squeezed states at a 50:50 beam-splitter(BS). We investigate the generation of the EPR entangled ...Einstein–Podolski–Rosen(EPR) entanglement state is achievable by combining two single-mode position and momentum squeezed states at a 50:50 beam-splitter(BS). We investigate the generation of the EPR entangled state of two vibrating membranes in a ring resonator, where clockwise(CW) and counter-clockwise(CCW) travelling-wave modes are driven by lasers and finite-bandwidth squeezed lights. Since the optomechanical coupling depends on the location of the membranes, CW and CCW can couple to the symmetric and antisymmetric combination of mechanical modes for a suitable arrangement, which corresponds to a 50:50 BS mixing. Moreover, by employing the red-detuned driving laser and tuning the central frequency of squeezing field blue detuned from the driving laser with a mechanical frequency, the squeezing property of squeezed light can be perfectly transferred to the mechanical motion in the weak coupling regime. Thus, the BS mixing modes can be position and momentum squeezed by feeding the appropriate squeezed lights respectively, and the EPR entangled mechanical state is obtained. Moreover, cavity-induced mechanical cooling can further suppress the influence of thermal noise on the entangled state.展开更多
Low temperature(77 K)photoluminescence measurements have been performed on different GaAs substrates to evaluate the GaAs crystal quality.Several defect-related luminescence peaks have been observed,including 1.452 eV...Low temperature(77 K)photoluminescence measurements have been performed on different GaAs substrates to evaluate the GaAs crystal quality.Several defect-related luminescence peaks have been observed,including 1.452 eV,1.476 eV,1.326 eV peaks deriving from 78 meV GaAs antisite defects,and 1.372 eV,1.289 eV peaks resulting from As vacancy related defects.Changes in photoluminescence emission intensity and emission energy as a function of temperature and excitation power lead to the identification of the defect states.The luminescence mechanisms of the defect states were studied by photoluminescence spectroscopy and the growth quality of GaAs crystal was evaluated.展开更多
Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of qu...Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of quasicrystalline phases were monitored using X-ray diffraction. Diffusion of Fe into the Cu matrix is proposed as the cause which triggers the instability of crystalline phases and leads to the formation of quasicrystalline phases after 10 h of milling. Milling for 100 h resulted in two different quasicrystalline phases with different lattice constants. Role of the nanocrystalline microstructure as an important criterion for the destabilisation of crystalline phases is explained. It is suggested that the formation of nanocrystalline microstructure and their subsequent transformation into quasicrystalline phases may be associated with a continuous increase in the disclination content of the system, which had formed as a result of continued milling and mechanical deformation.展开更多
The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights ...The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights achieved,the material that compounds the structure can be subjected to different stress paths along the failure plane.The theoretical framework considered in the design of these structures generally is the critical state soil mechanics(CSSM).However,the data in the literature concerning the uniqueness of critical state line(CSL)is still controversial as the soil is subjected to different stress paths.With respect to tailings,this question is even more restricted.This paper studies two tailings with different gradings due to the beneficial processes over extension and compression paths.A series of drained and undrained triaxial tests was conducted over a range of initial densities and stress levels.In the q-p'plane,different critical stress ratio(M)values were obtained for compression and extension stress paths.However,the critical state friction angle is very similar with a slightly higher critical state friction angle for extension tests.Curved stress path dependent CSLs were obtained in the n-lnp0 plane with the extension tests below the CSL defined in compression.Regarding the fines content,the studied tailings presented very similar M and critical state friction angle values.However,the fines content af-fects the volumetric behavior of the studied tailings and the CSLs on the n-lnp0 plane shift downwards with the increasing fines content for compression and extension tests.In relation to dilatancy analysis,the fines content did not present an evident influence on the dilatancy of the materials.However,different values of mean stress ratio N were obtained between compression and extension tests and can corroborate the existence of non-unique CSLs for these materials.展开更多
LiCoxMn2.04 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750 ℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition...LiCoxMn2.04 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750 ℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition and electrochemical performance were characterized with XRD, SEM, ICP-AES and charge-discharge test. The experimental results show that all samples have a single spinel structure, well formed crystal shape and uniformly particle size distribution. The lattice parameters of LiCo Mn2-xO4 decrease and the average oxidation states of manganese ions increase with an increase in Co content. Compared with pure LiMn2O4, the LiCo Mn2xO4 (x=0.03-0.12) samples show a lower special capacity, but their cycling life are improved. The capacity loss of LiCo009Mn191O4 and LiCo0.1Mn1.88O4 is only 1.85% and 0.95%, respectively, after the 20th cycle. The improvement of the cycle performance is attributed to the substitution of Co at the Mn sites in the spinel structure, which suppresses the Jahn-Teller distortion and improves the structural stability.展开更多
A generalized scheme for the construction of coherent states in the context of position-dependent effective mass systems has been presented. This formalism is based on the ladder operators and associated algebra of th...A generalized scheme for the construction of coherent states in the context of position-dependent effective mass systems has been presented. This formalism is based on the ladder operators and associated algebra of the system which are obtained using the concepts of supersymmetric quantum mechanics and the property of shape invariance. In order to exemplify the general results and to analyze the properties of the coherent states, several examples have been considered.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(FRF-EYIT-23-07)。
文摘Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.
文摘The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.
文摘The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.
文摘Under steady-state conditions, the general currents of EE reactions at disk,hemispherical and spherical microelectrodes are derived.From these equations, some electrode reaction parameters can be very simply obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.61505014 and 11504031)the Yangtze Youth Talents Fundthe Yangtze Funds for Youth Teams of Science and Technology Innovation(Grant No.2015cqt03)
文摘Einstein–Podolski–Rosen(EPR) entanglement state is achievable by combining two single-mode position and momentum squeezed states at a 50:50 beam-splitter(BS). We investigate the generation of the EPR entangled state of two vibrating membranes in a ring resonator, where clockwise(CW) and counter-clockwise(CCW) travelling-wave modes are driven by lasers and finite-bandwidth squeezed lights. Since the optomechanical coupling depends on the location of the membranes, CW and CCW can couple to the symmetric and antisymmetric combination of mechanical modes for a suitable arrangement, which corresponds to a 50:50 BS mixing. Moreover, by employing the red-detuned driving laser and tuning the central frequency of squeezing field blue detuned from the driving laser with a mechanical frequency, the squeezing property of squeezed light can be perfectly transferred to the mechanical motion in the weak coupling regime. Thus, the BS mixing modes can be position and momentum squeezed by feeding the appropriate squeezed lights respectively, and the EPR entangled mechanical state is obtained. Moreover, cavity-induced mechanical cooling can further suppress the influence of thermal noise on the entangled state.
基金Project supported by the National Natural Science Foundation of China(Grant No.21972103)the National Key Research and Development Program of China(Grant No.2016YFB040183)Research and Development Program of Shanxi Province,China(Grant No.201703D111026)
文摘Low temperature(77 K)photoluminescence measurements have been performed on different GaAs substrates to evaluate the GaAs crystal quality.Several defect-related luminescence peaks have been observed,including 1.452 eV,1.476 eV,1.326 eV peaks deriving from 78 meV GaAs antisite defects,and 1.372 eV,1.289 eV peaks resulting from As vacancy related defects.Changes in photoluminescence emission intensity and emission energy as a function of temperature and excitation power lead to the identification of the defect states.The luminescence mechanisms of the defect states were studied by photoluminescence spectroscopy and the growth quality of GaAs crystal was evaluated.
文摘Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of quasicrystalline phases were monitored using X-ray diffraction. Diffusion of Fe into the Cu matrix is proposed as the cause which triggers the instability of crystalline phases and leads to the formation of quasicrystalline phases after 10 h of milling. Milling for 100 h resulted in two different quasicrystalline phases with different lattice constants. Role of the nanocrystalline microstructure as an important criterion for the destabilisation of crystalline phases is explained. It is suggested that the formation of nanocrystalline microstructure and their subsequent transformation into quasicrystalline phases may be associated with a continuous increase in the disclination content of the system, which had formed as a result of continued milling and mechanical deformation.
基金wish to express their appreciation to Vale S.A.and Brazilian Research Council(CNPq)for the support to the research group.
文摘The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights achieved,the material that compounds the structure can be subjected to different stress paths along the failure plane.The theoretical framework considered in the design of these structures generally is the critical state soil mechanics(CSSM).However,the data in the literature concerning the uniqueness of critical state line(CSL)is still controversial as the soil is subjected to different stress paths.With respect to tailings,this question is even more restricted.This paper studies two tailings with different gradings due to the beneficial processes over extension and compression paths.A series of drained and undrained triaxial tests was conducted over a range of initial densities and stress levels.In the q-p'plane,different critical stress ratio(M)values were obtained for compression and extension stress paths.However,the critical state friction angle is very similar with a slightly higher critical state friction angle for extension tests.Curved stress path dependent CSLs were obtained in the n-lnp0 plane with the extension tests below the CSL defined in compression.Regarding the fines content,the studied tailings presented very similar M and critical state friction angle values.However,the fines content af-fects the volumetric behavior of the studied tailings and the CSLs on the n-lnp0 plane shift downwards with the increasing fines content for compression and extension tests.In relation to dilatancy analysis,the fines content did not present an evident influence on the dilatancy of the materials.However,different values of mean stress ratio N were obtained between compression and extension tests and can corroborate the existence of non-unique CSLs for these materials.
基金the Foundation of Key Laboratory of Yunnan Province(No.14051038)
文摘LiCoxMn2.04 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750 ℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition and electrochemical performance were characterized with XRD, SEM, ICP-AES and charge-discharge test. The experimental results show that all samples have a single spinel structure, well formed crystal shape and uniformly particle size distribution. The lattice parameters of LiCo Mn2-xO4 decrease and the average oxidation states of manganese ions increase with an increase in Co content. Compared with pure LiMn2O4, the LiCo Mn2xO4 (x=0.03-0.12) samples show a lower special capacity, but their cycling life are improved. The capacity loss of LiCo009Mn191O4 and LiCo0.1Mn1.88O4 is only 1.85% and 0.95%, respectively, after the 20th cycle. The improvement of the cycle performance is attributed to the substitution of Co at the Mn sites in the spinel structure, which suppresses the Jahn-Teller distortion and improves the structural stability.
文摘A generalized scheme for the construction of coherent states in the context of position-dependent effective mass systems has been presented. This formalism is based on the ladder operators and associated algebra of the system which are obtained using the concepts of supersymmetric quantum mechanics and the property of shape invariance. In order to exemplify the general results and to analyze the properties of the coherent states, several examples have been considered.