期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Seismic performance evaluation of steel frame-steel plate shear walls system based on the capacity spectrum method 被引量:3
1
作者 Jian-hua SHAO Qiang GU Yong-kang SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期322-329,共8页
This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the... This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested. 展开更多
关键词 steel frame-steel plate shear walls (SPSW) system Capacity spectrum method (CSM) Seismic demand spectrum Base shear force-roof displacement Seismic performance evaluation
下载PDF
Improving behavior of semi-supported steel plate shear walls
2
作者 Ali GHAMARI Abbas AKBARPOUR Ali GHANBARI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2891-2905,共15页
In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This short... In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This shortcoming can be resolved by using semi-supported SPSW.The semi-supported SPSW has secondary columns that prevent the transfer of stress from the infill plate to the main columns.In spite of extensive experimental and numerical investigations on SPSWs,there are many ambiguities regarding the behavior of the semi-supported SPSW.Although stress in the columns is reduced,incomplete diagonal tension field action is formed in the infill plate that creates new problems.In this paper,a new type of semi-supported SPSW is presented in which the steel plate and the secondary columns are angled.The creation of the angle of the plate and the secondary column makes it possible to use the full capacity of the steel plate as well as the capacity of the secondary columns.Numerical results showed that the wall with a 60°angle has a favorable performance relative to the semi-supported wall.Moreover,with the 60°angle,stiffness,strength and energy absorption is increased.The angle of the secondary columns has little effect on the non-elastic stiffness.Nevertheless,using a wall with an angle of more than 90°can neutralize the wall’s behavior relative to conventional walls.Therefore,the wall with a 60°angle as an optimal angle is recommended. 展开更多
关键词 steel plate shear wall(SPSW) DUCTILITY STIFFNESS ultimate strength R factor
下载PDF
Numerical modeling of seismic behavior of ellipse and peanut-shaped auxetic steel plate shear walls
3
作者 Junjie Wang Yazhi Zhu Xiaoning Cai 《Low-carbon Materials and Green Construction》 2023年第1期112-131,共20页
This study proposes a new auxetic-shaped steel plate shear walls(simply referred to as ASSPSWs)consisting of boundary members and built-in perforated infill plates.The connection type between the boundary members is a... This study proposes a new auxetic-shaped steel plate shear walls(simply referred to as ASSPSWs)consisting of boundary members and built-in perforated infill plates.The connection type between the boundary members is a hinge joint.The hole forms on the infill plates include orthogonal ellipse-shaped(ASSPSW-OE)and orthogonal peanutshaped(ASSPSW-OP).This paper studied the hysteretic performance of two steel plate shear walls’types based on the finite element analysis method.Within the study context,a parametric analysis was carried out to investigate the influence of various factors,such as hole size and hole distance,on the seismic performance of steel plate shear walls(SPSWs).The results indicated that reducing the the ratio of the ligament thickness to ellipse major axis(t/D)in orthogonal ellipse-shaped SPSWs can effectively increase the porosity while reducing the bearing and energy dissipation capacities.Under the condition with the t/D unchanged,increasing the ratio of the major to minor axis of the ellipse(d/D)raises the porosity and does not significantly reduce the bearing capacity and energy dissipation capacity of the SPSWs.For orthogonal peanut-shaped SPSWs,the holes’geometrical parameters significantly influence the hysteretic performance.Particularly,with the increase in the radial ratio of large to small circles in a peanut-shaped hole(R/r),the spacing between cells decreases.When drift exceeds 2%,the equivalent viscous damping ratio decreases sharply.Unlike the orthogonal ellipse-shaped SPSWs,changing the arrangement angle of peanut-shaped cells has no significant effect on orthogonal peanut-shaped SPSWs.However,the larger the angle,the greater the out-of-plane buckling of orthogonal ellipse-shaped SPSWs;thus,the energy dissipation capacity is reduced.The similarities lie in that the larger cell arrangement angle will make the steel plates have a complete stress field,and the bearing capacity will be slightly improved.When the cell arrangement angle(θ)is 45°,the SPSWs can develop high initial stiffness. 展开更多
关键词 AUXETICS steel plate shear wall Ellipse shape Peanut shape Cyclic loading Hysteresis response
下载PDF
Pseudo-dynamic testing of a fabricated composite frame with steel plate shear walls 被引量:3
4
作者 Zheng-gang CAO Peng DU +1 位作者 Feng FAN Zhe-ming CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2017年第6期454-466,共13页
A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic perlbrmance. The specimen was a three-storey single-bay frame, which was compo... A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic perlbrmance. The specimen was a three-storey single-bay frame, which was composed of H- section steel columns and composite beams, and was assembled by bolted height-adjustable steel beam-to-column connections (BHA connections). Beam-only-connected SPSWs were selected as lateral load resisting members. The specimen was subjected to four ground motions of progressively increasing intensity. The results showed that: (1) beam-only-connected S PSWs provided sufficient lateral load resistance, lateral stiffness, and energy dissipation capacity to the fabricated frame via the tension ficld action developed in their infill panels; (2) the fabricated frame, assembled by BHA connections, exhibited substantial redundancy and good ductility; (3) an undesirable failure mode of the fabricated frame, in huge earthquakes, included severe cracking in composite beams and block shear failure in SPSWs' connections; (4) the inter-storey shear force distribution determined by ASCE/SE1 7-10 was verified with experimental data. 展开更多
关键词 Fabricated frame Composite beam steel plate shear walls Pseudo-dynamic test
原文传递
Self-centering steel plate shear walls for improving seismic resilience 被引量:2
5
作者 Patricia M. CLAYTON Daniel M. DOWDEN +4 位作者 Chao-Hsien LI Jeffrey W. BERMAN Michel BRUNEAU Laura N. LOWES Keh-Chuan TSAI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第3期283-290,共8页
As part of a Network for Earthquake Engineering Simulation research project led by researchers at the University of Washington with collaborators at University at Buffalo, and Taiwan National Center for Research on Ea... As part of a Network for Earthquake Engineering Simulation research project led by researchers at the University of Washington with collaborators at University at Buffalo, and Taiwan National Center for Research on Earthquake Engineering, a self-centering steel plate shear wall (SC-SPSW) system has been developed to achieve enhanced seismic performance objectives, including recentering. The SC-SPSW consists of thin steel infill panels, referred to as web plates that serve as the primary lateral load-resisting and energy dissipating element of the system. Post- tensioned (PT) beam-to-column connections provide system recentering capabilities. A performance-based design procedure has been developed for the SC-SPSW, and a series of nonlinear response history analyses have been conducted to verify intended seismic performance at multiple hazard levels. Quasi-static subassembly tests, quasi-static and shake table tests of scaled three-story specimens, and pseudo-dynamic tests of two full-scale two-story SC-SPSWs have been conducted. As a culmination of this multi-year, multi-institutional project, this paper will present an overview of the SC- SPSW numerical and experimental research programs. This paper will also discuss innovative PT connection and web plate designs that were investigated to improve constructability, resilience, and seismic performance and that can be applied to other self-centering and steel plate shear wall systems. 展开更多
关键词 SELF-CENTERING steel plate shear walls large-scale experiment post-tensioned connections performance-baseddesign
原文传递
Lateral stiffness of steel plate shear walls 被引量:2
6
作者 NIE JianGuo ZHU Li 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第1期151-162,共12页
The steel plate shear wall system has been used in a number of buildings as an innovative lateral force resistant system.Openings often exist in the steel plate shear walls due to the various functional requirements o... The steel plate shear wall system has been used in a number of buildings as an innovative lateral force resistant system.Openings often exist in the steel plate shear walls due to the various functional requirements of structures.These openings may negatively impact the lateral stiffness of steel plate shear walls.Therefore,an experimental research was instituted to investigate the seismic behavior of steel plate shear walls,with and without openings.The experimental results showed that steel plate shear walls have the satisfying seismic behavior,and,as expected,the strength and stiffness characteristics of the walls were reduced due to openings.Then a single-story wall panel FE model and an analytical deep beam model are developed in order to find the critical factors dominating the thickness reduction coefficient of wall panels with the opening.Furthermore,extensive parametric analysis is conducted to derive a simplified formula for the determination of the thickness reduction coefficient of wall panels with the opening for substituting solid wall panels with reduced thickness for actual wall panels with the opening.Finally,the design method for calculating the lateral stiffness is verified by some experimental programs and recommended for the routine practice of steel plate shear walls. 展开更多
关键词 steel plate shear walls wall panels with the opening thickness reduction coefficient lateral stiffness design method analytical deep beam model
原文传递
Study on the Structural Performance of Steel Plate Shear Wall with Slits on Both Sides
7
作者 Yuchen Liu Heesung Kim 《International Journal of Technology Management》 2015年第7期121-123,共3页
This paper presents a new type of two sides slotted steel plate shear wall, and carries on the analysis to the finite element elastic buckling, respectively discusses the critical buckling load and the buckling mode. ... This paper presents a new type of two sides slotted steel plate shear wall, and carries on the analysis to the finite element elastic buckling, respectively discusses the critical buckling load and the buckling mode. For the steel plate shear wall without stiffening ribs on both sides, the paper given the buckling coefficient formula, and give design proposal and reference value of steel plate shear wall with stiffened on both sides. 展开更多
关键词 steel plate shear wall elastic buckling ultimate load-carrying capacity
下载PDF
Experimental research on the seismic behavior of CSPSWs connected to frame beams 被引量:1
8
作者 Guo Lanhui Ma Xinbo Li Ran Zhang Sumei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第1期65-73,共9页
The seismic performance of composite steel plate shear walls (CSPSWs) that consist of a steel plate shear wall (SPSW) with reinforced concrete (RC) panels attached to one or both sides by means of bolts or conne... The seismic performance of composite steel plate shear walls (CSPSWs) that consist of a steel plate shear wall (SPSW) with reinforced concrete (RC) panels attached to one or both sides by means of bolts or connectors is experimentally studied. The shear wall is connected to the frame beams but not to the columns. This arrangement restrains the possible out-of-plane buckling of the thin-walled steel plate, thus significantly increasing the bearing capacity and ductility of the overall wall, and prevents the premature overall or local buckling failure of the frame columns. From a practical viewpoint, these solutions can provide open space in a floor as this type of composite shear walls with a relatively small aspect ratio can be placed parallel along a bay. In this study, four CSPSWs and one SPSW were tested and the results showed that both CSPSWs and SPSW possessed good ductility. For SPSW alone, the buckling appeared and resulted in a decrease of bearing capacity and energy dissipation capacity. In addition, welding stiffeners at corners were shown to be an effective way to increase the energy dissipation capacity of CSPSWs. 展开更多
关键词 steel plate shear wall (SPSW) composite steel plate shear wall (CSPSW) seismic behavior DUCTILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部