Developing dynamic color-tunable ultra-long room temperature phosphorescence(URTP)polymers with afterglow of over 1 s,photo-chromism,and multi-stimuli response for practical anti-counterfeiting and information securit...Developing dynamic color-tunable ultra-long room temperature phosphorescence(URTP)polymers with afterglow of over 1 s,photo-chromism,and multi-stimuli response for practical anti-counterfeiting and information security applications is attractive but very challenging.Herein,by doping multicolor phosphorescence pyri-dinium bromide L block or viologen-based photo-chromic V block into polyvinyl alcohol matrixes,the water-stimuli-responsive color-tunable URTP polymerfilms with afterglow of up to 8 s and the reversible viologen-based photochromic polymerfilms have been developed.More significantly,a series of dynamic color-tunable URTP polymerfilms with ultra-long afterglow of over 6 s,photo-chromism,and water-stimuli response have been successfully exploited by integrating L and V blocks into one polymer system.Mechanistic investigations have revealed that their photo-chromism mainly comes from the photo-generated viologen free radicals.Furthermore,their dynamic multilevel anti-counterfeiting applications have been demonstrated.These results pave the way to develop smarter multifunctional URTP materials for anti-counterfeiting and optical sensing.展开更多
Three multi-responsiveness supramolecular metal-organic gels(MOGs)have been prepared upon Ba(OAc)_(2),CdSO_(4)•8H_(2)O and Pb(NO_(3))_(2) with a simple ligand(G17)based on a carboxyl-functionalized benzimidazole deriv...Three multi-responsiveness supramolecular metal-organic gels(MOGs)have been prepared upon Ba(OAc)_(2),CdSO_(4)•8H_(2)O and Pb(NO_(3))_(2) with a simple ligand(G17)based on a carboxyl-functionalized benzimidazole derivative in alcoholic-water solutions.The MOGs display the formation of well-developed nanofibrillar networks composed of intertwined fibers which provide stability to gels structures through coordination,hydrogen bonding and π-π interactions characterized by using field emission scanning electron microscopy(FESEM),the fourier transform infrared(FT-IR)spectroscopy and powder X-ray diffraction(XRD)techniques.MOG-1 shows good stimuli responsiveness toward the changes in K_(2)CrO_(4),both MOG-2 and MOG-3 do good job toward the changes in Na_(2)S.Moreover,because these MOGs were formed easily by gelator with some heavy metal ion,such as Cd(Ⅱ)and Pb(Ⅱ),it might provide the basis for heavy metal ion capture and removal.展开更多
Integrated multimodal imaging in theranostics nanomaterials offers extensive prospects for precise and noninvasive cancer treatment.Precisely controlling the structural evolution of plasmonic nanoparticles is crucial ...Integrated multimodal imaging in theranostics nanomaterials offers extensive prospects for precise and noninvasive cancer treatment.Precisely controlling the structural evolution of plasmonic nanoparticles is crucial in the development of pho-tothermal agents.However,previous successes have been limited to static assemblies and single-component structures.Here,an activatable plasmonic theranostics system utilizing self-assembled 1D silver-coated gold nanochains(1D nanochains)is pre-sented for precise tumor diagnosis and effective treatment.The absorbance of the adaptable core–shell chain structure can shift from visible to near-infrared(NIR)regions due to the fusion between nearby Au@Ag nanoparticles induced by ele-vated H2O2 levels in the tumor microenvironment(TME),resulting in the creation of a novel 3D aggregates with strong NIR absorption.With a high photothermal conversion efficiency of 60.2%at 808 nm,nanochains utilizing the TME-activated characteristics show remarkable qualities for photoacoustic imaging and signifi-cantly limit tumor growth in vivo.This study may pave the way for precise tumor diagnosis and treatment through customizable,optically tunable adaptive plasmonic nanostructures.展开更多
Multi-functional nanoshuttles for remotely targeted and on-demand delivery of therapeutic molecules and imaging to defined tissues and organs hold great potentials in personalized medicine, including precise early dia...Multi-functional nanoshuttles for remotely targeted and on-demand delivery of therapeutic molecules and imaging to defined tissues and organs hold great potentials in personalized medicine, including precise early diagnosis, efficient prevention and therapy without toxicity. Yet, in spite of 25 years of research, there are still no such shuttles available. To this end, we have designed magnetic and gold nanoparticles (NP)-embedded silica nanoshuttles (MGNSs) with nanopores on their surface. Fluorescently labeled Doxombicin (DOX), a cancer drug, was loaded in the MGNSs as a payload. DOX loaded MGNSs were encapsulated in heat and pH sensitive polymer P(NIPAM-co- MAA) to enable controlled release of the payload. Magnetically-guided transport of MGNSs was examined in: (a) a glass capillary tube to simulate their delivery via blood vessels; and (b) porous hydrogels to simulate their transport in composite human tissues, including bone, cartilage, tendon, muscles and blood-brain barrier {BBB). The viscoelastic properties of hydrogels were examined by atomic force microscopy (AFM). Cellular uptake of DOX- loaded MGNSs and the subsequent pH and temperature-mediated release were demonstrated in differentiated human neurons derived from induced pluripotent stem cells (iPSCs) as well as epithelial HeLa cells. The presence of embedded iron and gold NPs in silica shells and polymer-coating are supported by SEM and TEM. Fluorescence spectroscopy and microscopy documented DOX loading in the MGNSs. Time-dependent transport of MGNSs guided by an external magnetic field was observed in both glass capillary tubes and in the porous hydrogel. AFM results affirmed that the stiffness of the hydrogels model the rigidity range from soft tissues to bone. pH and temperature-dependent drug release analysis showed stimuli responsive and gradual drug release. Cells' viability MTT assays showed that MGNSs are non-toxic. The cell death from on-demand DOX release was observed in both neurons and epithelial cells even though the drug release efficiency was higher in neurons. Therefore, development of smart nanoshuttles have significant translational potential for controlled delivery of theranostics' payloads and precisely guided transport in specified tissues and organs (for example, bone, cartilage, tendon, bone marrow, heart, lung, liver, kidney, and brain) for highly efficient personalized medicine applications.展开更多
Conventional tumor-targeted drug delivery systems(DDSs)face challenges,such as unsatisfied systemic circulation,low targeting efficiency,poor tumoral penetration,and uncontrolled drug release.Recently,tumor cellular m...Conventional tumor-targeted drug delivery systems(DDSs)face challenges,such as unsatisfied systemic circulation,low targeting efficiency,poor tumoral penetration,and uncontrolled drug release.Recently,tumor cellular molecules-triggered DDSs have aroused great interests in addressing such dilemmas.With the introduction of several additional functionalities,the properties of these smart DDSs including size,surface charge and ligand exposure can response to different tumor microenvironments for a more efficient tumor targeting,and eventually achieve desired drug release for an optimized therapeutic efficiency.This review highlights the recent research progresses on smart tumor environment responsive drug delivery systems for targeted drug delivery.Dynamic targeting strategies and functional moieties sensitive to a variety of tumor cellular stimuli,including pH,glutathione,adenosine-triphosphate,reactive oxygen species,enzyme and inflammatory factors are summarized.Special emphasis of this review is placed on their responsive mechanisms,drug loading models,drawbacks and merits.Several typical multi-stimuli responsive DDSs are listed.And the main challenges and potential future development are discussed.展开更多
The complexity of the tumor microenvironment(TME)severely hinders the therapeutic effects of various cancer treatment modalities.The TME differs from normal tissues owing to the presence of hypoxia,lowpH,and immunesup...The complexity of the tumor microenvironment(TME)severely hinders the therapeutic effects of various cancer treatment modalities.The TME differs from normal tissues owing to the presence of hypoxia,lowpH,and immunesuppressive characteristics.Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors.Recently,polymeric nanomedicines have been widely used in cancer therapy,because their synthesis can be controlled and they are highly modifiable,and have demonstrated great potential to remodel the TME.In this review,we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME,aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.展开更多
Artificial molecular muscles undergo well-controlled contractile and extensile motions upon external stimulation,leading to remarkable length changes.Evaluating such length changes at the molecular level is essential ...Artificial molecular muscles undergo well-controlled contractile and extensile motions upon external stimulation,leading to remarkable length changes.Evaluating such length changes at the molecular level is essential to the design of integrated artificial molecular muscles that mimic biological muscles.Taking advantage of the strong contrast of platinum(Pt)atoms in high-angle annular dark-field scanning transmission electron microscopy images,we imaged Pt-containing molecular[c2]daisy chains directly by employing metal atom markers.The length changes and associated conformational transformations of these newly developed artificial molecular muscles have been measured experimentally in combination with theoretical calculations.The contraction ratios of these two molecular muscles with the TEMPO or pyrene anchoring group were calculated to be 21.0%or 15.7%respectively,suggesting a substantial anchoring effect.This study demonstrates the experimental measurement of the length changes of artificial molecular muscles and provides a new avenue for investigating the motion of artificial molecular machines.展开更多
Nanoparticle surface property is crucial for circulation stability,cellullar uptake and other biological characteristics.Zwitte rionic pillar[n]arenes(ZPns)we re used to coat gold nanopa rticles(GNPs)via hostguest int...Nanoparticle surface property is crucial for circulation stability,cellullar uptake and other biological characteristics.Zwitte rionic pillar[n]arenes(ZPns)we re used to coat gold nanopa rticles(GNPs)via hostguest interaction.The resulting GNPs demonstrated higher stability in blood serum compared to polyethylene glycol(PEG)-coated GNPs.ZPn-coated GNPs were responsive to UV-irradiation,competitive displacement and acidic pH.UV-irradiation or competitive displacement could lead to the removal of ZPn coating to expose GNPs,which enhanced cell uptake efficiency by 5.9-and 7.4-fold,respectively.展开更多
Bacterial biofilm infections have been threatening the human’s life and health globally for a long time because they typically cause chronic and persistent infections.Traditional antibiotic therapies can hardly eradi...Bacterial biofilm infections have been threatening the human’s life and health globally for a long time because they typically cause chronic and persistent infections.Traditional antibiotic therapies can hardly eradicate biofilms in many cases,as biofilms always form a robust fortress for pathogens inside,inhibiting the penetration of drugs.To address the issues,many novel drug carriers emerged as promising strategies for biofilm treatment.Among them,stimuli-responsive nanocarriers have attracted much attentions for their intriguing physicochemical properties,such as tunable size,shape and surface chemistry,especially smart drug release characteristic.Based on the microenvironmental difference between biofilm infection sites and normal tissue,many stimuli,such as bacterial products accumulating in biofilms(enzymes,glutathione,etc.),lower pH and higher H_(2)O_(2)levels,have been employed and proved in favor of“on-demand”drug release for biofilm elimination.Additionally,external stimuli including light,heat,microwave and magnetic fields are also able to control the drug releasing behavior artificially.In this review,we summarized recent advances in stimuli-responsive nanocarriers for combating biofilm infections,and mainly,focusing on the different stimuli that trigger the drug release.展开更多
Achieving multicolor photoluminescence under multiple stimuli response based on a single fluorescent compound remains a great challenge. Herein, we report a novel multicolor fluorescent supramolecular assembly, which ...Achieving multicolor photoluminescence under multiple stimuli response based on a single fluorescent compound remains a great challenge. Herein, we report a novel multicolor fluorescent supramolecular assembly, which was constructed from surfactant sodium dodecyl sulfate (SLS) and fluorescent compound 1 bearing a rigid symmetrical acceptor-donor-acceptor structure. The luminescence property of 1/SLS assembly showed the multiple stimuli response towards temperature, cyclodextrin complexation and UV light irradiation, exhibiting the tunable emission wavelengths from 490 nm to 590 nm and the multicolor photoluminescence including cyan, green, yellow and orange. Furthermore, this assembly could be used in light writing owing to the fast fluorescence change within 15 s. These results could provide a convenient and useful method for fabricating smart tunable photoluminescent materials.展开更多
Smart materials,such as stimuli-responsive luminescence,have attracted much attentions due to their potential application in semiconductor filed.In this context,platinum complexes of(dfppy-DC)Pt(acac) and(dfppy-O-DC)P...Smart materials,such as stimuli-responsive luminescence,have attracted much attentions due to their potential application in semiconductor filed.In this context,platinum complexes of(dfppy-DC)Pt(acac) and(dfppy-O-DC)Pt(acac) were prepared and characterized,in which(2-(4',6'-difluorophenyl)pyridinato-N,C2')(2,4-pentanedionato-0,0)Pt(Ⅱ) was used as the planar emission core and 9-(4-(phenylsulfonyl)phenyl)-9 H-carbazole(DC) was regard as the bent pendent.Both platinum complexes showed bright emission in solution and solid state,concomitant with charming external-stimuli-responsive emission under mechanical grinding,organic solvent vapors and pressure.The change emission color spanned from yellow to near-infrared region.Using the platinum complexes as the dopant,solution processable organic light-emitting diodes(OLEDs) were fabricated and a maximum external quantum efficiency of ~18% was achieved,which is the highest value among the reported solution-processable OLEDs based on externalstimuli-responsive luminescence.This research demonstrated that platinum complex can show promising stimuli responsive emission via ingenious molecular design,indicating a novel way for developing the smart materials in semiconductor filed.展开更多
Smart molecules have attracted increasing attention due to their transformative role in creating the next generation of smart structures and devices.Smart bistable coordination complexes are a class of functional comp...Smart molecules have attracted increasing attention due to their transformative role in creating the next generation of smart structures and devices.Smart bistable coordination complexes are a class of functional complexes which have two stable states that can be reversibly switched in response to external stimuli.Such bistable molecules play a vital role in various applications,such as sensors,data storage,spintronics,smart windows,optical switches,information encryption and decryption,displays,actuators,etc.Herein,the recent research studies into the development of these smart bistable metal coordination complexes are reviewed.According to the different external stimuli,these smart bistable coordination systems have been classified and summarized,including light-responsive systems,thermally-responsive systems,electrically-responsive systems,mechanicallyresponsive systems,and some other cases.These systems are further subdivided according to the changes in signals(e.g.,color,fluorescence,spin state,crystalline phase)under external stimuli.The design principles of each type of smart bistable metal complexes as well as their broad and innovative applications are comprehensively described.Finally,the challenges and opportunities in this field are briefly analyzed and discussed.展开更多
Dental caries is one of the most prevalent human diseases resulting from tooth demineralization caused by acid production of bacteria plaque.It remains challenges for current practice to specifically identify,interven...Dental caries is one of the most prevalent human diseases resulting from tooth demineralization caused by acid production of bacteria plaque.It remains challenges for current practice to specifically identify,intervene and interrupt the development of caries while restoring defects.In this study,inspired by natural dental plaque,a stimuli-responsive multidrug delivery system(PMs@NaF-SAP)has been developed to prevent tooth decay and promote enamel restoration.Classic spherical core-shell structures of micelles dual-loaded with antibacterial and restorative agents are self-assembled into bacteria-responsive multidrug delivery system based on the pH-cleavable boronate ester bond,followed by conjugation with salivary-acquired peptide(SAP)to endow the nanoparticle with strong adhesion to tooth enamel.The constructed PMs@NaF-SAP specifically adheres to tooth,identifies cariogenic conditions and intelligently releases drugs at acidic pH,thereby providing antibacterial adhesion and cariogenic biofilm resistance,and restoring the microarchitecture and mechanical properties of demineralized teeth.Topical treatment with PMs@NaF-SAP effectively diminishes the onset and severity of caries without impacting oral microbiota diversity or surrounding mucosal tissues.These findings demonstrate this novel nanotherapy has potential as a promising biomedical application for caries prevention and tooth defect restoration while resisting biofilm-associated diseases in a controlled manner activated by pathological bacteria.展开更多
Amphiphilic rigid backbone polymers are traditionally seemed as one-dimensional(1D)rods and show distinct self-assembly behavior to flexible polymers,but they could hardly adapt morphology-tunable self-assembly by cha...Amphiphilic rigid backbone polymers are traditionally seemed as one-dimensional(1D)rods and show distinct self-assembly behavior to flexible polymers,but they could hardly adapt morphology-tunable self-assembly by changing their holistic conformation upon external stimuli.In this study,we synthesized a series of amphiphilic homopolymers poly(acetylene azobenzene oligoethylene glycol)(P(AAzo-EGx))containing conjugated polyacetylene mainchain,azobenzene pendants and oligo ethylene glycol tails in each unit.This comb-like amphiphilic polymer could be treated as two-dimensional(2D)nanoribbons with tunable holistic conformation via meticulous tailoring intrastrand repulsion and interchainπ-πinteraction of azobenzene pendants by light,temperature,and solvent swelling.P(AAzo-EG_(2))could self-assemble into large vesicles in ambient,whereas transformed to supramolecular helix bundles(SHBs)at 65℃as well as depicted by dissipative particle dynamics(DPD)simulation,and then turned into grass leaf-like micelles upon sequential ultraviolet(UV)and blue light irradiation.The three assemblies featured different stacking mode of PAAzo skeletons although showed similar aggregate induce emission(AIE)effect.In this holistic macromolecular chain conformation-induced self-assembly and morphology transformation,temperature influenced the stacking of hydrophobic parts mainly by tuning the torsion of PAAzo skeleton.Certain amount of good solvent played a vital role by swelling of hydrophobic PAAzo skeleton,and helping the movement and rearrangement of azobenzene pendants and polyacetylene mainchains like a lubricant.The length and diameter of SHBs could be tuned by changing EGxtails.This work uncovered a facile strategy to tailor the self-assembly of rigid backbone polymers for fabrication of functional nanodevices.展开更多
Stimuli-responsive synthetic polypeptide-containing block copolymers have received considerable attention in recent years.Especially,unique thermo-induced sol-gel phase transitions were observed for elaborately-design...Stimuli-responsive synthetic polypeptide-containing block copolymers have received considerable attention in recent years.Especially,unique thermo-induced sol-gel phase transitions were observed for elaborately-designed amphiphilic diblock copolypeptides and a range of poly(ethylene glycol)(PEG)-polypeptide block copolymers.The thermo-induced gelation mechanisms involve the evolution of secondary conformation,enhanced intramolecular interactions,as well as reduced hydration and increased chain entanglement of PEG blocks.The physical parameters,including polymer concentrations,sol-gel transition temperatures and storage moduli,were investigated.The polypeptide hydrogels exhibited good biocompatibility in vitro and in vivo,and displayed biodegradation periods ranging from 1 to 5 weeks.The unique thermo-induced sol-gel phase transitions offer the feasibility of minimal-invasive injection of the precursor aqueous solutions into body,followed by in situ hydrogel formation driven by physiological temperature.These advantages make polypeptide hydrogels interesting candidates for diverse biomedical applications,especially as injectable scaffolds for 3D cell culture and tissue regeneration as well as depots for local drug delivery.This review focuses on recent advances in the design and preparation of injectable,thermo-induced physically crosslinked polypeptide hydrogels.The influence of composition,secondary structure and chirality of polypeptide segments on the physical properties and biodegradation of the hydrogels are emphasized.Moreover,the studies on biomedical applications of the hydrogels are intensively discussed.Finally,the major challenges in the further development of polypeptide hydrogels for practical applications are proposed.展开更多
Precisely delivering combinational therapeutic agents has become a crucial challenge for anti-tumor treatment. In this study, a novel redox-responsive polymeric prodrug(molecular weight,MW: 93.5 k Da) was produced by ...Precisely delivering combinational therapeutic agents has become a crucial challenge for anti-tumor treatment. In this study, a novel redox-responsive polymeric prodrug(molecular weight,MW: 93.5 k Da) was produced by reversible addition-fragmentation chain transfer(RAFT) polymerization. The amphiphilic block polymer-doxorubicin(DOX) prodrug was employed to deliver a hydrophobic photosensitizer(PS), chlorin e6(Ce6), and the as-prepared nanoscale system [NPs(Ce6)] was investigated as a chemo-photodynamic anti-cancer agent. The glutathione(GSH)-cleavable disulfide bond was inserted into the backbone of the polymer for biodegradation inside tumor cells, and DOX conjugated onto the polymer with a disulfide bond was successfully released intracellularly. NPs(Ce6) released DOX and Ce6 with their original molecular structures and degraded into segments with low MWs of 41.2 k Da in the presence of GSH. NPs(Ce6) showed a chemo-photodynamic therapeutic effect to kill 4 T1 murine breast cancer cells, which was confirmed from a collapsed cell morphology, a lifted level in the intracellular reactive oxygen species, a reduced viability and induced apoptosis. Moreover, ex vivo fluorescence images indicated that NPs(Ce6) retained in the tumor, and exhibited a remarkable in vivo anticancer efficacy. The combinational therapy showed a significantly increased tumor growth inhibition(TGI,58.53%). Therefore, the redox-responsive, amphiphilic block polymeric prodrug could have a great potential as a chemo-photodynamic anti-cancer agent.展开更多
Smart fluorescent patterns enable dynamic color variation under external stimuli,showing a much higher security level in the field of anti-counterfeiting.However,there is still lacking of a simple and convenient way t...Smart fluorescent patterns enable dynamic color variation under external stimuli,showing a much higher security level in the field of anti-counterfeiting.However,there is still lacking of a simple and convenient way to achieve dynamic fluorescence changes.Herein,a fluorescent organohydrogel made up of a poly(N,/N-dimethylacrylamide-co-isopropylacrylamide)(p(DMA-NIPAM))hydrogel network and a polyflauryl methacrylate)(PLMA)organogel network was fabricated via a two-step interpenetrating technique.The former network bears naphthalimide moieties(DEAN,green fluorescent monomer)and the later contains 6-acrylamidopicolinic acid(6APA,fluorescent ligand),leading to emitting green fluorescence.When Eu^(3+) was introduced and coordinated with 6APA,the organohydrogel displays red fluorescence,which can further emit yellow after applying thermal stimulus.Furthermore,by adjusting the proportion of comonomers,various organohydrogels can be obtained,which can be programmed and act as an effective platform for the encryption and decryption of secret information.展开更多
Multifunctional core-shell nanostructures formed by integration of distinct components have received wide attention as promising biological platforms in recent years. In this work, crystalline zeolitic imidazolate fra...Multifunctional core-shell nanostructures formed by integration of distinct components have received wide attention as promising biological platforms in recent years. In this work, crystalline zeolitic imidazolate framework-8 (ZIF-8), a typical metal-organic framework (MOF), is coated onto single gold nanorod (AuNR) core for successful realization of synergistic photothermal and chemotherapy triggered by near-infrared (NIR) light. Impressivel)~ high doxorubicin hydrochloride (DOX) loading capacity followed by pH and NIR light dual stimuli-responsive DOX release can be easily implemented through formation and breakage of coordination bonds in the system. Moreover, under NIR laser irradiation at 808 nm, these novel AuNR@MOF core-shell nanostructures exhibit effective synergistic chemo-photothermal therapy both in vitro and in vivo, confirmed by cell treatment and tumor ablation via intravenous injection.展开更多
Hollow mesoporous silica nanoparticles(HMSNs)have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties,large specific surface area and facile functional...Hollow mesoporous silica nanoparticles(HMSNs)have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties,large specific surface area and facile functionalization,especially made into intelligent drug delivery systems(DDSs)for cancer therapy.HMSNS are employed to transport traditional anti-tumor drugs,which can solve the problems of drugs with instability,poor solubility and lack of recognition,etc.,while significantly improving the anti-tumor effect.And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment.Actually,HMSNs-based DDSS have developed relatively mature in recent years.This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS,as well as its degradation,different stimuli-responses,targets and combination therapy.These versatile intelligent nanoparticles show great potential in clinical aspects.展开更多
Mechanochromic organic materials are a typical class of stimuli materials that has response to external physical stimuli such as shearing,grinding,and compressing etc.Organic compounds with mechanochromic characters i...Mechanochromic organic materials are a typical class of stimuli materials that has response to external physical stimuli such as shearing,grinding,and compressing etc.Organic compounds with mechanochromic characters in solid forms have attracted significant attention in the past decades due to their potential applications in sensors and memory devices.Diamond anvil cell is an emerging technology that can provide isotropic pressure in a tiny place.Thus a new stimuli method can be applied in investigating optical variation of mechanochromic materials.In this review,we focus on mechanoluminescence systems that are responsive to isotropic compression under high pressure and summarize the recent advances on organic materials studied by the diamond anvil cell.展开更多
基金Priority Academic Program Development of Jiangsu Higher Education InstitutionsApplied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province,Grant/Award Number:BK20231340+4 种基金Changzhou Introduction Program of Innovative Leading Talents,Grant/Award Number:CQ20220111Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20170290Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,Grant/Award Number:17KJB150002Opening Project of Zhejiang Engineering Research Center of Fat-soluble Vitamin,Grant/Award Number:202107National Natural Science Foundation of China,Grant/Award Numbers:51803143,。
文摘Developing dynamic color-tunable ultra-long room temperature phosphorescence(URTP)polymers with afterglow of over 1 s,photo-chromism,and multi-stimuli response for practical anti-counterfeiting and information security applications is attractive but very challenging.Herein,by doping multicolor phosphorescence pyri-dinium bromide L block or viologen-based photo-chromic V block into polyvinyl alcohol matrixes,the water-stimuli-responsive color-tunable URTP polymerfilms with afterglow of up to 8 s and the reversible viologen-based photochromic polymerfilms have been developed.More significantly,a series of dynamic color-tunable URTP polymerfilms with ultra-long afterglow of over 6 s,photo-chromism,and water-stimuli response have been successfully exploited by integrating L and V blocks into one polymer system.Mechanistic investigations have revealed that their photo-chromism mainly comes from the photo-generated viologen free radicals.Furthermore,their dynamic multilevel anti-counterfeiting applications have been demonstrated.These results pave the way to develop smarter multifunctional URTP materials for anti-counterfeiting and optical sensing.
基金the National Natural Science Foundation of China(Nos.21064006,21262032 and 21161018)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT1177)+1 种基金the Natural Science Foundation of Gansu Province(No.1010RJZA018)the Youth Foundation of Gansu Province(No.1208RJYA048 and NWNU-LKQN-11-32).
文摘Three multi-responsiveness supramolecular metal-organic gels(MOGs)have been prepared upon Ba(OAc)_(2),CdSO_(4)•8H_(2)O and Pb(NO_(3))_(2) with a simple ligand(G17)based on a carboxyl-functionalized benzimidazole derivative in alcoholic-water solutions.The MOGs display the formation of well-developed nanofibrillar networks composed of intertwined fibers which provide stability to gels structures through coordination,hydrogen bonding and π-π interactions characterized by using field emission scanning electron microscopy(FESEM),the fourier transform infrared(FT-IR)spectroscopy and powder X-ray diffraction(XRD)techniques.MOG-1 shows good stimuli responsiveness toward the changes in K_(2)CrO_(4),both MOG-2 and MOG-3 do good job toward the changes in Na_(2)S.Moreover,because these MOGs were formed easily by gelator with some heavy metal ion,such as Cd(Ⅱ)and Pb(Ⅱ),it might provide the basis for heavy metal ion capture and removal.
基金Chinese Academy of Sciences,Grant/Award Number:ZDBS-LY-SLH036CAMS Innovation Fund for Medical Sciences,Grant/Award Number:2023-I2M-3-009+1 种基金Science and Technology Support Program of Jiangsu Province,Grant/Award Number:BZ2022056Ministry of Education-Singapore,Grant/Award Number:Tier 1 A-8000013-00-00。
文摘Integrated multimodal imaging in theranostics nanomaterials offers extensive prospects for precise and noninvasive cancer treatment.Precisely controlling the structural evolution of plasmonic nanoparticles is crucial in the development of pho-tothermal agents.However,previous successes have been limited to static assemblies and single-component structures.Here,an activatable plasmonic theranostics system utilizing self-assembled 1D silver-coated gold nanochains(1D nanochains)is pre-sented for precise tumor diagnosis and effective treatment.The absorbance of the adaptable core–shell chain structure can shift from visible to near-infrared(NIR)regions due to the fusion between nearby Au@Ag nanoparticles induced by ele-vated H2O2 levels in the tumor microenvironment(TME),resulting in the creation of a novel 3D aggregates with strong NIR absorption.With a high photothermal conversion efficiency of 60.2%at 808 nm,nanochains utilizing the TME-activated characteristics show remarkable qualities for photoacoustic imaging and signifi-cantly limit tumor growth in vivo.This study may pave the way for precise tumor diagnosis and treatment through customizable,optically tunable adaptive plasmonic nanostructures.
基金supported in part by the National Institute on Aging of National Institutes of Health(Grant AG028709)the FUMEC and AMC for funds to support the 2016 summer research yield at the University of California in San Diego
文摘Multi-functional nanoshuttles for remotely targeted and on-demand delivery of therapeutic molecules and imaging to defined tissues and organs hold great potentials in personalized medicine, including precise early diagnosis, efficient prevention and therapy without toxicity. Yet, in spite of 25 years of research, there are still no such shuttles available. To this end, we have designed magnetic and gold nanoparticles (NP)-embedded silica nanoshuttles (MGNSs) with nanopores on their surface. Fluorescently labeled Doxombicin (DOX), a cancer drug, was loaded in the MGNSs as a payload. DOX loaded MGNSs were encapsulated in heat and pH sensitive polymer P(NIPAM-co- MAA) to enable controlled release of the payload. Magnetically-guided transport of MGNSs was examined in: (a) a glass capillary tube to simulate their delivery via blood vessels; and (b) porous hydrogels to simulate their transport in composite human tissues, including bone, cartilage, tendon, muscles and blood-brain barrier {BBB). The viscoelastic properties of hydrogels were examined by atomic force microscopy (AFM). Cellular uptake of DOX- loaded MGNSs and the subsequent pH and temperature-mediated release were demonstrated in differentiated human neurons derived from induced pluripotent stem cells (iPSCs) as well as epithelial HeLa cells. The presence of embedded iron and gold NPs in silica shells and polymer-coating are supported by SEM and TEM. Fluorescence spectroscopy and microscopy documented DOX loading in the MGNSs. Time-dependent transport of MGNSs guided by an external magnetic field was observed in both glass capillary tubes and in the porous hydrogel. AFM results affirmed that the stiffness of the hydrogels model the rigidity range from soft tissues to bone. pH and temperature-dependent drug release analysis showed stimuli responsive and gradual drug release. Cells' viability MTT assays showed that MGNSs are non-toxic. The cell death from on-demand DOX release was observed in both neurons and epithelial cells even though the drug release efficiency was higher in neurons. Therefore, development of smart nanoshuttles have significant translational potential for controlled delivery of theranostics' payloads and precisely guided transport in specified tissues and organs (for example, bone, cartilage, tendon, bone marrow, heart, lung, liver, kidney, and brain) for highly efficient personalized medicine applications.
基金Supported by the Huxiang Young Talent Program of Hunan Province(2018RS3005)The Project of Innovation-driven Plan in Central South University(2020CX048)+3 种基金Hunan Provincial Natural Science Foundation of China(2019JJ60071,2020JJ4680)the Shenghua Yuying Project of Central South University,the Hunan Provincial Postgraduate Research and Innovation Project(CX20190242)Postgraduate Independent Exploration and Innovation Project of Central South University(2019zzts1017,2019zzts750)the Key Research Fund of Hunan Provincial Education Department(18A211).
文摘Conventional tumor-targeted drug delivery systems(DDSs)face challenges,such as unsatisfied systemic circulation,low targeting efficiency,poor tumoral penetration,and uncontrolled drug release.Recently,tumor cellular molecules-triggered DDSs have aroused great interests in addressing such dilemmas.With the introduction of several additional functionalities,the properties of these smart DDSs including size,surface charge and ligand exposure can response to different tumor microenvironments for a more efficient tumor targeting,and eventually achieve desired drug release for an optimized therapeutic efficiency.This review highlights the recent research progresses on smart tumor environment responsive drug delivery systems for targeted drug delivery.Dynamic targeting strategies and functional moieties sensitive to a variety of tumor cellular stimuli,including pH,glutathione,adenosine-triphosphate,reactive oxygen species,enzyme and inflammatory factors are summarized.Special emphasis of this review is placed on their responsive mechanisms,drug loading models,drawbacks and merits.Several typical multi-stimuli responsive DDSs are listed.And the main challenges and potential future development are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.51988102,51833010,and 52273114)the Fundamental Research Funds for the Central Universities(No.PKU2022 XGK008).
文摘The complexity of the tumor microenvironment(TME)severely hinders the therapeutic effects of various cancer treatment modalities.The TME differs from normal tissues owing to the presence of hypoxia,lowpH,and immunesuppressive characteristics.Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors.Recently,polymeric nanomedicines have been widely used in cancer therapy,because their synthesis can be controlled and they are highly modifiable,and have demonstrated great potential to remodel the TME.In this review,we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME,aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
基金financial support by the National Natural Science Foundation of China(grant no.92056203)the Science and Technology Commission of Shanghai Municipality(grant no.21520710200)+8 种基金the National Key R&D Program of China(grant no.2021YFA1501600)the Innovation Program of Shanghai Municipal Education Commission(grant no.2019-01-07-00-05-E00012)W.W.acknowledges the financial support by the National Natural Science Foundation of China(grant no.22001073)the Natural Science Foundation of Shanghai(grant no.23ZR1419600)L.H.acknowledges the financial support by the National Nature Science Foundation of China(grant no.22103062)the Shanghai Pujiang Program(grant no.22PJ1402800)the Fundamental Research Funds for the Central UniversitiesX.-Q.W.acknowledges the financial support by the National Natural Science Foundation of China(grant no.22201077)W.-J.L.is grateful to the China Postdoctoral Science Foundation(grant nos.BX2021103 and 2021M700044)for financial support.
文摘Artificial molecular muscles undergo well-controlled contractile and extensile motions upon external stimulation,leading to remarkable length changes.Evaluating such length changes at the molecular level is essential to the design of integrated artificial molecular muscles that mimic biological muscles.Taking advantage of the strong contrast of platinum(Pt)atoms in high-angle annular dark-field scanning transmission electron microscopy images,we imaged Pt-containing molecular[c2]daisy chains directly by employing metal atom markers.The length changes and associated conformational transformations of these newly developed artificial molecular muscles have been measured experimentally in combination with theoretical calculations.The contraction ratios of these two molecular muscles with the TEMPO or pyrene anchoring group were calculated to be 21.0%or 15.7%respectively,suggesting a substantial anchoring effect.This study demonstrates the experimental measurement of the length changes of artificial molecular muscles and provides a new avenue for investigating the motion of artificial molecular machines.
基金National Natural Science Foundation of China(Nos.21672042 and 21921003)for financial support。
文摘Nanoparticle surface property is crucial for circulation stability,cellullar uptake and other biological characteristics.Zwitte rionic pillar[n]arenes(ZPns)we re used to coat gold nanopa rticles(GNPs)via hostguest interaction.The resulting GNPs demonstrated higher stability in blood serum compared to polyethylene glycol(PEG)-coated GNPs.ZPn-coated GNPs were responsive to UV-irradiation,competitive displacement and acidic pH.UV-irradiation or competitive displacement could lead to the removal of ZPn coating to expose GNPs,which enhanced cell uptake efficiency by 5.9-and 7.4-fold,respectively.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51873212 and 51803212)the Youth Innovation Promotion Association of Chinese Academy Science(No.2017269)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2019MEM008)Chinese Academy of Sciences-Wego Group Hightech Research&Development Program.
文摘Bacterial biofilm infections have been threatening the human’s life and health globally for a long time because they typically cause chronic and persistent infections.Traditional antibiotic therapies can hardly eradicate biofilms in many cases,as biofilms always form a robust fortress for pathogens inside,inhibiting the penetration of drugs.To address the issues,many novel drug carriers emerged as promising strategies for biofilm treatment.Among them,stimuli-responsive nanocarriers have attracted much attentions for their intriguing physicochemical properties,such as tunable size,shape and surface chemistry,especially smart drug release characteristic.Based on the microenvironmental difference between biofilm infection sites and normal tissue,many stimuli,such as bacterial products accumulating in biofilms(enzymes,glutathione,etc.),lower pH and higher H_(2)O_(2)levels,have been employed and proved in favor of“on-demand”drug release for biofilm elimination.Additionally,external stimuli including light,heat,microwave and magnetic fields are also able to control the drug releasing behavior artificially.In this review,we summarized recent advances in stimuli-responsive nanocarriers for combating biofilm infections,and mainly,focusing on the different stimuli that trigger the drug release.
文摘Achieving multicolor photoluminescence under multiple stimuli response based on a single fluorescent compound remains a great challenge. Herein, we report a novel multicolor fluorescent supramolecular assembly, which was constructed from surfactant sodium dodecyl sulfate (SLS) and fluorescent compound 1 bearing a rigid symmetrical acceptor-donor-acceptor structure. The luminescence property of 1/SLS assembly showed the multiple stimuli response towards temperature, cyclodextrin complexation and UV light irradiation, exhibiting the tunable emission wavelengths from 490 nm to 590 nm and the multicolor photoluminescence including cyan, green, yellow and orange. Furthermore, this assembly could be used in light writing owing to the fast fluorescence change within 15 s. These results could provide a convenient and useful method for fabricating smart tunable photoluminescent materials.
基金Financial support was from the National Natural Science Foundation of China(Nos.51773021,51911530197,U1663229)Six Talent Peaks Project in Jiangsu Province(No.XCL-102)the Talent Project of Jiangsu Specially-Appointed Professor,Natural Science Fund for Colleges and Universities in Jiangsu Province(No.19KJA430002)。
文摘Smart materials,such as stimuli-responsive luminescence,have attracted much attentions due to their potential application in semiconductor filed.In this context,platinum complexes of(dfppy-DC)Pt(acac) and(dfppy-O-DC)Pt(acac) were prepared and characterized,in which(2-(4',6'-difluorophenyl)pyridinato-N,C2')(2,4-pentanedionato-0,0)Pt(Ⅱ) was used as the planar emission core and 9-(4-(phenylsulfonyl)phenyl)-9 H-carbazole(DC) was regard as the bent pendent.Both platinum complexes showed bright emission in solution and solid state,concomitant with charming external-stimuli-responsive emission under mechanical grinding,organic solvent vapors and pressure.The change emission color spanned from yellow to near-infrared region.Using the platinum complexes as the dopant,solution processable organic light-emitting diodes(OLEDs) were fabricated and a maximum external quantum efficiency of ~18% was achieved,which is the highest value among the reported solution-processable OLEDs based on externalstimuli-responsive luminescence.This research demonstrated that platinum complex can show promising stimuli responsive emission via ingenious molecular design,indicating a novel way for developing the smart materials in semiconductor filed.
基金supported by the National Natural Science Foundation of China(Grant Nos.22271139)the Fundamental Research Funds for the Central Universities(020514380294).
文摘Smart molecules have attracted increasing attention due to their transformative role in creating the next generation of smart structures and devices.Smart bistable coordination complexes are a class of functional complexes which have two stable states that can be reversibly switched in response to external stimuli.Such bistable molecules play a vital role in various applications,such as sensors,data storage,spintronics,smart windows,optical switches,information encryption and decryption,displays,actuators,etc.Herein,the recent research studies into the development of these smart bistable metal coordination complexes are reviewed.According to the different external stimuli,these smart bistable coordination systems have been classified and summarized,including light-responsive systems,thermally-responsive systems,electrically-responsive systems,mechanicallyresponsive systems,and some other cases.These systems are further subdivided according to the changes in signals(e.g.,color,fluorescence,spin state,crystalline phase)under external stimuli.The design principles of each type of smart bistable metal complexes as well as their broad and innovative applications are comprehensively described.Finally,the challenges and opportunities in this field are briefly analyzed and discussed.
基金supported by the National Natural Science Foundation of China(No.82001106,81970918,81901043).
文摘Dental caries is one of the most prevalent human diseases resulting from tooth demineralization caused by acid production of bacteria plaque.It remains challenges for current practice to specifically identify,intervene and interrupt the development of caries while restoring defects.In this study,inspired by natural dental plaque,a stimuli-responsive multidrug delivery system(PMs@NaF-SAP)has been developed to prevent tooth decay and promote enamel restoration.Classic spherical core-shell structures of micelles dual-loaded with antibacterial and restorative agents are self-assembled into bacteria-responsive multidrug delivery system based on the pH-cleavable boronate ester bond,followed by conjugation with salivary-acquired peptide(SAP)to endow the nanoparticle with strong adhesion to tooth enamel.The constructed PMs@NaF-SAP specifically adheres to tooth,identifies cariogenic conditions and intelligently releases drugs at acidic pH,thereby providing antibacterial adhesion and cariogenic biofilm resistance,and restoring the microarchitecture and mechanical properties of demineralized teeth.Topical treatment with PMs@NaF-SAP effectively diminishes the onset and severity of caries without impacting oral microbiota diversity or surrounding mucosal tissues.These findings demonstrate this novel nanotherapy has potential as a promising biomedical application for caries prevention and tooth defect restoration while resisting biofilm-associated diseases in a controlled manner activated by pathological bacteria.
基金supported by the National Natural Science Foundation of China(52073094,52073092,52273291)the Projects of Shanghai Municipality(20ZR1415600)。
文摘Amphiphilic rigid backbone polymers are traditionally seemed as one-dimensional(1D)rods and show distinct self-assembly behavior to flexible polymers,but they could hardly adapt morphology-tunable self-assembly by changing their holistic conformation upon external stimuli.In this study,we synthesized a series of amphiphilic homopolymers poly(acetylene azobenzene oligoethylene glycol)(P(AAzo-EGx))containing conjugated polyacetylene mainchain,azobenzene pendants and oligo ethylene glycol tails in each unit.This comb-like amphiphilic polymer could be treated as two-dimensional(2D)nanoribbons with tunable holistic conformation via meticulous tailoring intrastrand repulsion and interchainπ-πinteraction of azobenzene pendants by light,temperature,and solvent swelling.P(AAzo-EG_(2))could self-assemble into large vesicles in ambient,whereas transformed to supramolecular helix bundles(SHBs)at 65℃as well as depicted by dissipative particle dynamics(DPD)simulation,and then turned into grass leaf-like micelles upon sequential ultraviolet(UV)and blue light irradiation.The three assemblies featured different stacking mode of PAAzo skeletons although showed similar aggregate induce emission(AIE)effect.In this holistic macromolecular chain conformation-induced self-assembly and morphology transformation,temperature influenced the stacking of hydrophobic parts mainly by tuning the torsion of PAAzo skeleton.Certain amount of good solvent played a vital role by swelling of hydrophobic PAAzo skeleton,and helping the movement and rearrangement of azobenzene pendants and polyacetylene mainchains like a lubricant.The length and diameter of SHBs could be tuned by changing EGxtails.This work uncovered a facile strategy to tailor the self-assembly of rigid backbone polymers for fabrication of functional nanodevices.
基金support from the National Key Research and Development Program of China(2022YFC2604003)National Natural Science Foundation of China(projects 52173147,51973218,52203202,51833010)the Scientific and Technological Development Projects of Jilin Province(20210204136YY).
文摘Stimuli-responsive synthetic polypeptide-containing block copolymers have received considerable attention in recent years.Especially,unique thermo-induced sol-gel phase transitions were observed for elaborately-designed amphiphilic diblock copolypeptides and a range of poly(ethylene glycol)(PEG)-polypeptide block copolymers.The thermo-induced gelation mechanisms involve the evolution of secondary conformation,enhanced intramolecular interactions,as well as reduced hydration and increased chain entanglement of PEG blocks.The physical parameters,including polymer concentrations,sol-gel transition temperatures and storage moduli,were investigated.The polypeptide hydrogels exhibited good biocompatibility in vitro and in vivo,and displayed biodegradation periods ranging from 1 to 5 weeks.The unique thermo-induced sol-gel phase transitions offer the feasibility of minimal-invasive injection of the precursor aqueous solutions into body,followed by in situ hydrogel formation driven by physiological temperature.These advantages make polypeptide hydrogels interesting candidates for diverse biomedical applications,especially as injectable scaffolds for 3D cell culture and tissue regeneration as well as depots for local drug delivery.This review focuses on recent advances in the design and preparation of injectable,thermo-induced physically crosslinked polypeptide hydrogels.The influence of composition,secondary structure and chirality of polypeptide segments on the physical properties and biodegradation of the hydrogels are emphasized.Moreover,the studies on biomedical applications of the hydrogels are intensively discussed.Finally,the major challenges in the further development of polypeptide hydrogels for practical applications are proposed.
基金financially supported by the National Natural Science Foundation of China(82073790,51873120,51673127,and 81621003)1·3·5 project for disciplines of excellence,West China Hospital,Sichuan University,China(ZYJC21013,ZYGD18028)。
文摘Precisely delivering combinational therapeutic agents has become a crucial challenge for anti-tumor treatment. In this study, a novel redox-responsive polymeric prodrug(molecular weight,MW: 93.5 k Da) was produced by reversible addition-fragmentation chain transfer(RAFT) polymerization. The amphiphilic block polymer-doxorubicin(DOX) prodrug was employed to deliver a hydrophobic photosensitizer(PS), chlorin e6(Ce6), and the as-prepared nanoscale system [NPs(Ce6)] was investigated as a chemo-photodynamic anti-cancer agent. The glutathione(GSH)-cleavable disulfide bond was inserted into the backbone of the polymer for biodegradation inside tumor cells, and DOX conjugated onto the polymer with a disulfide bond was successfully released intracellularly. NPs(Ce6) released DOX and Ce6 with their original molecular structures and degraded into segments with low MWs of 41.2 k Da in the presence of GSH. NPs(Ce6) showed a chemo-photodynamic therapeutic effect to kill 4 T1 murine breast cancer cells, which was confirmed from a collapsed cell morphology, a lifted level in the intracellular reactive oxygen species, a reduced viability and induced apoptosis. Moreover, ex vivo fluorescence images indicated that NPs(Ce6) retained in the tumor, and exhibited a remarkable in vivo anticancer efficacy. The combinational therapy showed a significantly increased tumor growth inhibition(TGI,58.53%). Therefore, the redox-responsive, amphiphilic block polymeric prodrug could have a great potential as a chemo-photodynamic anti-cancer agent.
基金the National Natural Science Foundation of China(52103246,51873223,51773215,21774138)the National Key Research and Development Program of China(2018YFC0114900,2018YFB1105100)+4 种基金the China Postdoctoral Science Foundation(2020M671828,2021TQ0341)the Natural Science Foundation of Ningbo(202003N4361,2021J203)the Key Research Program of Frontier Science,Chinese Academy of Sciences(QYZDB-SSW-SLH036)the Sino-German Mobility Program(M-0424),K.C.Wong Education Foundation(GJTD-2019-13)Medical and Health Research Project of Zhejiang Province(2021429693).
文摘Smart fluorescent patterns enable dynamic color variation under external stimuli,showing a much higher security level in the field of anti-counterfeiting.However,there is still lacking of a simple and convenient way to achieve dynamic fluorescence changes.Herein,a fluorescent organohydrogel made up of a poly(N,/N-dimethylacrylamide-co-isopropylacrylamide)(p(DMA-NIPAM))hydrogel network and a polyflauryl methacrylate)(PLMA)organogel network was fabricated via a two-step interpenetrating technique.The former network bears naphthalimide moieties(DEAN,green fluorescent monomer)and the later contains 6-acrylamidopicolinic acid(6APA,fluorescent ligand),leading to emitting green fluorescence.When Eu^(3+) was introduced and coordinated with 6APA,the organohydrogel displays red fluorescence,which can further emit yellow after applying thermal stimulus.Furthermore,by adjusting the proportion of comonomers,various organohydrogels can be obtained,which can be programmed and act as an effective platform for the encryption and decryption of secret information.
文摘Multifunctional core-shell nanostructures formed by integration of distinct components have received wide attention as promising biological platforms in recent years. In this work, crystalline zeolitic imidazolate framework-8 (ZIF-8), a typical metal-organic framework (MOF), is coated onto single gold nanorod (AuNR) core for successful realization of synergistic photothermal and chemotherapy triggered by near-infrared (NIR) light. Impressivel)~ high doxorubicin hydrochloride (DOX) loading capacity followed by pH and NIR light dual stimuli-responsive DOX release can be easily implemented through formation and breakage of coordination bonds in the system. Moreover, under NIR laser irradiation at 808 nm, these novel AuNR@MOF core-shell nanostructures exhibit effective synergistic chemo-photothermal therapy both in vitro and in vivo, confirmed by cell treatment and tumor ablation via intravenous injection.
基金supported by the National Natural Science Foundation of China(Grant Nos.51773162 and 21204071).
文摘Hollow mesoporous silica nanoparticles(HMSNs)have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties,large specific surface area and facile functionalization,especially made into intelligent drug delivery systems(DDSs)for cancer therapy.HMSNS are employed to transport traditional anti-tumor drugs,which can solve the problems of drugs with instability,poor solubility and lack of recognition,etc.,while significantly improving the anti-tumor effect.And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment.Actually,HMSNs-based DDSS have developed relatively mature in recent years.This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS,as well as its degradation,different stimuli-responses,targets and combination therapy.These versatile intelligent nanoparticles show great potential in clinical aspects.
基金supported by the National Natural Science Foundation of China(No.91333201)
文摘Mechanochromic organic materials are a typical class of stimuli materials that has response to external physical stimuli such as shearing,grinding,and compressing etc.Organic compounds with mechanochromic characters in solid forms have attracted significant attention in the past decades due to their potential applications in sensors and memory devices.Diamond anvil cell is an emerging technology that can provide isotropic pressure in a tiny place.Thus a new stimuli method can be applied in investigating optical variation of mechanochromic materials.In this review,we focus on mechanoluminescence systems that are responsive to isotropic compression under high pressure and summarize the recent advances on organic materials studied by the diamond anvil cell.