Uncovering the structure evolution and real active species of energy catalytic materials under reaction conditions is important for both understanding structure-activity relationship and constructing electrocatalysts ...Uncovering the structure evolution and real active species of energy catalytic materials under reaction conditions is important for both understanding structure-activity relationship and constructing electrocatalysts for CO2 electroreduction(CO2ER).And integrating CO2ER with an anodic organic transformation to replace the oxygen evolution reaction is highly desirable.Here,In2O3 is selected as the model material to reveal the surface reconstruction under CO2ER condition.In situ and ex situ results reveal that the electrochemical in situ reconstruction of crystalline In2O3 leads to the formation of crystalline-In/amorphous In2O3-x heterostructure(In/In2O3-x).In/In2O3-xacts as the real active phase with Faradaic efficiency of^89.2%for the formate,outperforming In(~67.5%).The improved performance can be ascribed to electron-rich In rectified by Schottky effect of In2O3-xheterostructure.Impressively,formate and high-value octanenitrile can be simultaneously achieved by integrating CO2ER with octylamine oxidation in an In2O3-x||Ni2P two-electrode electrolyzer.展开更多
基金the National Natural Science Foundation of China (21871206 and 21701122)。
文摘Uncovering the structure evolution and real active species of energy catalytic materials under reaction conditions is important for both understanding structure-activity relationship and constructing electrocatalysts for CO2 electroreduction(CO2ER).And integrating CO2ER with an anodic organic transformation to replace the oxygen evolution reaction is highly desirable.Here,In2O3 is selected as the model material to reveal the surface reconstruction under CO2ER condition.In situ and ex situ results reveal that the electrochemical in situ reconstruction of crystalline In2O3 leads to the formation of crystalline-In/amorphous In2O3-x heterostructure(In/In2O3-x).In/In2O3-xacts as the real active phase with Faradaic efficiency of^89.2%for the formate,outperforming In(~67.5%).The improved performance can be ascribed to electron-rich In rectified by Schottky effect of In2O3-xheterostructure.Impressively,formate and high-value octanenitrile can be simultaneously achieved by integrating CO2ER with octylamine oxidation in an In2O3-x||Ni2P two-electrode electrolyzer.