This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method...This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method and the surface sound pressure by Rayleigh integral,and expressed the sound radiation power of the structure in a positive definite quadratic form of the Hermitian with an impedance matrix.The ADS analysis of the plate was thus translated into the analysis of structure dynamic sensitivity and ...展开更多
Timbre,as one of the essential elements of sound,plays an important role in determining sound properties,whereas its manipulation has been remaining challenging for passive mechanical systems due to the intrinsic disp...Timbre,as one of the essential elements of sound,plays an important role in determining sound properties,whereas its manipulation has been remaining challenging for passive mechanical systems due to the intrinsic dispersion nature of resonances.Here,we present a meta-silencer supporting intensive mode density as well as highly tunable intrinsic loss and offering a fresh pathway for designable timbre in broadband.Strong global coupling is induced by intensive mode density and delicately modulated with the guidance of the theoretical model,which efficiently suppresses the resonance dispersion and provides desirable frequency-selective wave-manipulation capacity for timbre tuning.As proof-of-concept demonstrations for our design concepts,we propose three meta-silencers with the designing targets of high-efficiency broadband sound attenuation,efficiency-controlled sound attenuation and designable timbre,respectively.The proposed meta-silencers all operate in a broadband frequency range from 500 to 3200 Hz and feature deep-subwavelength sizes around 50 mm.Our work opens up a fundamental avenue to manipulate the timbre with passive resonances-controlled acoustic metamaterials and may inspire the development of novel multifunctional devices in noise-control engineering,impedance engineering,and architectural acoustics.展开更多
以某型柴油机的油底壳作为研究对象,对其声振特性进行识别与分析,确定设计穿孔板隔声罩的共振频带范围。使用粒子群算法针对共振频率进行穿孔板参数的优化设计,再通过阻抗管试验确定小孔分布对吸声性能的影响,并对穿孔板隔声罩进行多目...以某型柴油机的油底壳作为研究对象,对其声振特性进行识别与分析,确定设计穿孔板隔声罩的共振频带范围。使用粒子群算法针对共振频率进行穿孔板参数的优化设计,再通过阻抗管试验确定小孔分布对吸声性能的影响,并对穿孔板隔声罩进行多目标形貌优化设计以避开共振及激励频率。目标柴油机上加装优化的油底壳穿孔板隔声罩后,整机总声压级降低0.5 d B,降噪效果较好。展开更多
There is a bottleneck in the design of vehicle sound that the subjective perception of sound quality that combines multiple psychological factors fails to be accurately and objectively quantified.Therefore,EEG signals...There is a bottleneck in the design of vehicle sound that the subjective perception of sound quality that combines multiple psychological factors fails to be accurately and objectively quantified.Therefore,EEG signals are introduced in this paper to investigate the evaluation and design method of vehicle acceleration sound with powerful sound quality.Firstly,the experiment of EEG acquisition and subjective evaluation under the stimulation of powerful vehicle sounds is conducted,respectively,then three physiological EEG features of PSD_β,PSD_γand DE are constructed to evaluate the vehicle sounds based on the correlation analysis algorithms.Subsequently,the Adaptive Genetic Algorithm(AGA)is proposed to optimize the Elman model,where an intelligent model(AGA–Elman)is constructed to objectively predicate the perception of subjects for the vehicle sounds with powerful sound quality.The results demonstrate that the error of the constructed AGA–Elman model is only 2.88%,which outperforms than the traditional BP and Elman model;Finally,two vehicle acceleration sounds(Design1 and Design2)are designed based on the constructed AGA–Elman model from the perspective of order modulation and frequency modulation,which provide the acoustic theoretical guidance for the design of vehicle sound incorporating the EEG signals.展开更多
基金Funded by Doctoral Program Foundation of Institutions of Higher Education of China(20070487403)Natural Science Foundation of Hubei Province of China(2006ABA71)
文摘This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method and the surface sound pressure by Rayleigh integral,and expressed the sound radiation power of the structure in a positive definite quadratic form of the Hermitian with an impedance matrix.The ADS analysis of the plate was thus translated into the analysis of structure dynamic sensitivity and ...
文摘Timbre,as one of the essential elements of sound,plays an important role in determining sound properties,whereas its manipulation has been remaining challenging for passive mechanical systems due to the intrinsic dispersion nature of resonances.Here,we present a meta-silencer supporting intensive mode density as well as highly tunable intrinsic loss and offering a fresh pathway for designable timbre in broadband.Strong global coupling is induced by intensive mode density and delicately modulated with the guidance of the theoretical model,which efficiently suppresses the resonance dispersion and provides desirable frequency-selective wave-manipulation capacity for timbre tuning.As proof-of-concept demonstrations for our design concepts,we propose three meta-silencers with the designing targets of high-efficiency broadband sound attenuation,efficiency-controlled sound attenuation and designable timbre,respectively.The proposed meta-silencers all operate in a broadband frequency range from 500 to 3200 Hz and feature deep-subwavelength sizes around 50 mm.Our work opens up a fundamental avenue to manipulate the timbre with passive resonances-controlled acoustic metamaterials and may inspire the development of novel multifunctional devices in noise-control engineering,impedance engineering,and architectural acoustics.
文摘以某型柴油机的油底壳作为研究对象,对其声振特性进行识别与分析,确定设计穿孔板隔声罩的共振频带范围。使用粒子群算法针对共振频率进行穿孔板参数的优化设计,再通过阻抗管试验确定小孔分布对吸声性能的影响,并对穿孔板隔声罩进行多目标形貌优化设计以避开共振及激励频率。目标柴油机上加装优化的油底壳穿孔板隔声罩后,整机总声压级降低0.5 d B,降噪效果较好。
基金supported by the National Natural Science Foundation of China(No.52272389)the National Natural Science Foundation of China(No.52175111).
文摘There is a bottleneck in the design of vehicle sound that the subjective perception of sound quality that combines multiple psychological factors fails to be accurately and objectively quantified.Therefore,EEG signals are introduced in this paper to investigate the evaluation and design method of vehicle acceleration sound with powerful sound quality.Firstly,the experiment of EEG acquisition and subjective evaluation under the stimulation of powerful vehicle sounds is conducted,respectively,then three physiological EEG features of PSD_β,PSD_γand DE are constructed to evaluate the vehicle sounds based on the correlation analysis algorithms.Subsequently,the Adaptive Genetic Algorithm(AGA)is proposed to optimize the Elman model,where an intelligent model(AGA–Elman)is constructed to objectively predicate the perception of subjects for the vehicle sounds with powerful sound quality.The results demonstrate that the error of the constructed AGA–Elman model is only 2.88%,which outperforms than the traditional BP and Elman model;Finally,two vehicle acceleration sounds(Design1 and Design2)are designed based on the constructed AGA–Elman model from the perspective of order modulation and frequency modulation,which provide the acoustic theoretical guidance for the design of vehicle sound incorporating the EEG signals.