期刊文献+
共找到312篇文章
< 1 2 16 >
每页显示 20 50 100
Complete moment convergence for ND random variables under the sub-linear expectations
1
作者 FENG Feng-xiang WANG Ding-cheng WU Qun-ying 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2023年第3期444-457,共14页
In this article,we establish a general result on complete moment convergence for arrays of rowwise negatively dependent(ND)random variables under the sub-linear expectations.As applications,we can obtain a series of r... In this article,we establish a general result on complete moment convergence for arrays of rowwise negatively dependent(ND)random variables under the sub-linear expectations.As applications,we can obtain a series of results on complete moment convergence for ND random variables under the sub-linear expectations. 展开更多
关键词 complete convergence complete moment convergence ND random variables sub-linear expectation
下载PDF
STRONG LIMIT THEOREMS FOR EXTENDED INDEPENDENT RANDOM VARIABLES AND EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES UNDER SUB-LINEAR EXPECTATIONS 被引量:7
2
作者 Li-Xin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2022年第2期467-490,共24页
Limit theorems for non-additive probabilities or non-linear expectations are challenging issues which have attracted a lot of interest recently.The purpose of this paper is to study the strong law of large numbers and... Limit theorems for non-additive probabilities or non-linear expectations are challenging issues which have attracted a lot of interest recently.The purpose of this paper is to study the strong law of large numbers and the law of the iterated logarithm for a sequence of random variables in a sub-linear expectation space under a concept of extended independence which is much weaker and easier to verify than the independence proposed by Peng[20].We introduce a concept of extended negative dependence which is an extension of the kind of weak independence and the extended negative independence relative to classical probability that has appeared in the recent literature.Powerful tools such as moment inequality and Kolmogorov’s exponential inequality are established for these kinds of extended negatively independent random variables,and these tools improve a lot upon those of Chen,Chen and Ng[1].The strong law of large numbers and the law of iterated logarithm are also obtained by applying these inequalities. 展开更多
关键词 sub-linear expectation capacity extended negative dependence Kolmogorov’s exponential inequality laws of the iterated logarithm law of large numbers
下载PDF
Central limit theolrem for linear processes generated byⅡD random variables under the sub-linear expectation
3
作者 LIU Wei ZHANG Yong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第2期243-255,共13页
In this paper,we investigate the central limit theorem and the invariance principle for linear processes generated by a new notion of independently and identically distributed(IID)random variables for sub-linear expec... In this paper,we investigate the central limit theorem and the invariance principle for linear processes generated by a new notion of independently and identically distributed(IID)random variables for sub-linear expectations initiated by Peng[19].It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov's central limit theorem and invariance principle to the case where probability measures are no longer additive. 展开更多
关键词 central limit theorem invariance principle ⅡD random variables sub-linear expectation linear process
下载PDF
Strong Limit Theorems for Weighted Sums under the Sub-linear Expectations
4
作者 Feng-xiang FENG Ding-cheng WANG +1 位作者 Qun-ying WU Hai-wu HUANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第3期862-874,共13页
In this article,we study strong limit theorems for weighted sums of extended negatively dependent random variables under the sub-linear expectations.We establish general strong law and complete convergence theorems fo... In this article,we study strong limit theorems for weighted sums of extended negatively dependent random variables under the sub-linear expectations.We establish general strong law and complete convergence theorems for weighted sums of extended negatively dependent random variables under the sub-linear expectations.Our results of strong limit theorems are more general than some related results previously obtained by Thrum(1987),Li et al.(1995)and Wu(2010)in classical probability space. 展开更多
关键词 sub-linear expectation complete convergence complete moment convergence the maximal weighted sums
原文传递
The Sufficient and Necessary Conditions of the Strong Law of Large Numbers under Sub-linear Expectations
5
作者 Li Xin ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第12期2283-2315,共33页
In this paper, by establishing a Borel–Cantelli lemma for a capacity which is not necessarily continuous, and a link between a sequence of independent random variables under the sub-linear expectation and a sequence ... In this paper, by establishing a Borel–Cantelli lemma for a capacity which is not necessarily continuous, and a link between a sequence of independent random variables under the sub-linear expectation and a sequence of independent random variables on R^(∞) under a probability, we give the sufficient and necessary conditions of the strong law of large numbers for independent and identically distributed random variables under the sub-linear expectation, and the sufficient and necessary conditions for the convergence of an infinite series of independent random variables, without the assumption on the continuity of the capacities. A purely probabilistic proof of a weak law of large numbers is also given. 展开更多
关键词 sub-linear expectation capacity strong convergence law of large numbers
原文传递
Three Series Theorem for Independent Random Variables under Sub-linear Expectations with Applications 被引量:7
6
作者 Jia Pan XU Li Xin ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第2期172-184,共13页
In this paper, motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng, we establish a three series theorem of independent random variables ... In this paper, motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng, we establish a three series theorem of independent random variables under the sub-linear expectations. As an application, we obtain the Marcinkiewicz's strong law of large numbers for independent and identically distributed random variables under the sub-linear expectations. The technical details are different from those for classical theorems because the sub-linear expectation and its related capacity are not additive. 展开更多
关键词 sub-linear EXPECTATION capacity Rosenthal's INEQUALITY Kolmogorov's three series theorem Marcinkiewicz's strong law of large numbers
原文传递
Donsker’s Invariance Principle Under the Sub-linear Expectation with an Application to Chung’s Law of the Iterated Logarithm 被引量:19
7
作者 Li-Xin Zhang 《Communications in Mathematics and Statistics》 SCIE 2015年第2期187-214,共28页
We prove a new Donsker’s invariance principle for independent and identically distributed random variables under the sub-linear expectation.As applications,the small deviations and Chung’s law of the iterated logari... We prove a new Donsker’s invariance principle for independent and identically distributed random variables under the sub-linear expectation.As applications,the small deviations and Chung’s law of the iterated logarithm are obtained. 展开更多
关键词 sub-linear expectation Capacity Central limit theorem Invariance principle Chung’s law of the iterated logarithm Small deviation
原文传递
The Convergence of the Sums of Independent Random Variables Under the Sub-linear Expectations 被引量:5
8
作者 Li Xin ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第3期224-244,共21页
Let {Xn;n≥1} be a sequence of independent random variables on a probability space(Ω,F,P) and Sn=∑k=1n Xk.It is well-known that the almost sure convergence,the convergence in probability and the convergence in distr... Let {Xn;n≥1} be a sequence of independent random variables on a probability space(Ω,F,P) and Sn=∑k=1n Xk.It is well-known that the almost sure convergence,the convergence in probability and the convergence in distribution of Sn are equivalent.In this paper,we prove similar results for the independent random variables under the sub-linear expectations,and give a group of sufficient and necessary conditions for these convergence.For proving the results,the Levy and Kolmogorov maximal inequalities for independent random variables under the sub-linear expectation are established.As an application of the maximal inequalities,the sufficient and necessary conditions for the central limit theorem of independent and identically distributed random variables are also obtained. 展开更多
关键词 sub-linear EXPECTATION capacity INDEPENDENCE LEVY MAXIMAL inequality central limit theorem
原文传递
次线性期望空间下独立同分布序列的一个强大数定律
9
作者 王宝珍 吴群英 《应用数学》 北大核心 2024年第1期24-30,共7页
利用与概率空间不同的研究方法,研究次线性期望空间中独立同分布随机变量序列的加权和在某些条件下的一个强大数定律,从而将该定理从传统概率空间扩展到次线性期望空间.
关键词 次线性期望空间 独立同分布序列 强大数定律
下载PDF
Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications 被引量:49
10
作者 ZHANG LiXin 《Science China Mathematics》 SCIE CSCD 2016年第4期751-768,共18页
Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of indepen... Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng(2008),we introduce the concept of negative dependence of random variables and establish Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of negatively dependent random variables under the sub-linear expectations.As an application,we show that Kolmogorov's strong law of larger numbers holds for independent and identically distributed random variables under a continuous sub-linear expectation if and only if the corresponding Choquet integral is finite. 展开更多
关键词 sub-linear expectation capacity Kolmogorov's inequality Rosenthal's inequality negative dependence strong laws of large numbers
原文传递
Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm 被引量:42
11
作者 ZHANG LiXin 《Science China Mathematics》 SCIE CSCD 2016年第12期2503-2526,共24页
Kolmogorov's exponential inequalities are basic tools for studying the strong limit theorems such as the classical laws of the iterated logarithm for both independent and dependent random variables. This paper est... Kolmogorov's exponential inequalities are basic tools for studying the strong limit theorems such as the classical laws of the iterated logarithm for both independent and dependent random variables. This paper establishes the Kolmogorov type exponential inequalities of the partial sums of independent random variables as well as negatively dependent random variables under the sub-linear expectations. As applications of the exponential inequalities, the laws of the iterated logarithm in the sense of non-additive capacities are proved for independent or negatively dependent identically distributed random variables with finite second order moments.For deriving a lower bound of an exponential inequality, a central limit theorem is also proved under the sublinear expectation for random variables with only finite variances. 展开更多
关键词 sub-linear expectation capacity Kolmogorov's exponential inequality negative dependence laws of the iterated logarithm central limit theorem
原文传递
Lindeberg's central limit theorems for martingale-like sequences under sub-linear expectations 被引量:2
12
作者 Li-Xin Zhang 《Science China Mathematics》 SCIE CSCD 2021年第6期1263-1290,共28页
The central limit theorem of martingales is the fundamental tool for studying the convergence of stochastic processes,especially stochastic integrals and differential equations.In this paper,the central limit theorem ... The central limit theorem of martingales is the fundamental tool for studying the convergence of stochastic processes,especially stochastic integrals and differential equations.In this paper,the central limit theorem and the functional central limit theorem are obtained for martingale-like random variables under the sub-linear expectation.As applications,the Lindeberg's central limit theorem is obtained for independent but not necessarily identically distributed random variables,and a new proof of the Lévy characterization of a GBrownian motion without using stochastic calculus is given.For proving the results,Rosenthal's inequality and the exponential inequality for the martingale-like random variables are established. 展开更多
关键词 capacity central limit theorem functional central limit theorem martingale difference sub-linear expectation
原文传递
On the laws of the iterated logarithm under sub-linear expectations 被引量:2
13
作者 Li-Xin Zhang 《Probability, Uncertainty and Quantitative Risk》 2021年第4期409-460,共52页
In this paper,we establish some general forms of the law of the iterated logarithm for independent random variables in a sub-linear expectation space,where the random variables are not necessarily identically distribu... In this paper,we establish some general forms of the law of the iterated logarithm for independent random variables in a sub-linear expectation space,where the random variables are not necessarily identically distributed.Exponential inequalities for the maximum sum of independent random variables and Kolmogorov’s converse exponential inequalities are established as tools for showing the law of the iterated logarithm.As an application,the sufficient and necessary conditions of the law of the iterated logarithm for independent and identically distributed random variables under the sub-linear expectation are obtained.In the paper,it is also shown that if the sub-linear expectation space is rich enough,it will have no continuous capacity.The laws of the iterated logarithm are established without the assumption on the continuity of capacities. 展开更多
关键词 sub-linear expectation Capacity Kolmogorov’s exponential inequality Laws of the iterated logarithm
原文传递
一种基于加权拟合的定制家居封边板材尺寸测量方法
14
作者 盛旺 刘怀广 周诗洋 《林产工业》 北大核心 2024年第2期54-60,共7页
板材在流程化加工过程中,会因为辊道的不连续性导致其在运动过程中震动和倾斜,给其尺寸的在线测量带来困难。根据板材的形状特点,提出一种基于加权灰度矩的亚像素边界拟合定位方法,以实现宽度的准确测量。首先利用方向滤波和边缘算子进... 板材在流程化加工过程中,会因为辊道的不连续性导致其在运动过程中震动和倾斜,给其尺寸的在线测量带来困难。根据板材的形状特点,提出一种基于加权灰度矩的亚像素边界拟合定位方法,以实现宽度的准确测量。首先利用方向滤波和边缘算子进行边缘筛选,利用最小二乘法拟合边缘点集合得到像素级边缘,再基于离群度的灰度矩加权拟合方法,定位得出板材边缘的亚像素位置,克服了震动和光照造成的边缘离散问题,同时结合线阵相机的单维度标定方法,获得了板材宽度的测量结果。现场测试表明,该方法的测量精度小于0.1 mm,满足工厂测量的要求,且具有较好的鲁棒性。 展开更多
关键词 板材测量 灰度矩 亚像素定位 直线拟合 相机标定
下载PDF
次线性期望下宽相依随机变量的完全f-矩收敛性
15
作者 张子峰 华志强 《内蒙古民族大学学报(自然科学版)》 2024年第2期54-61,共8页
基于次线性期望下宽相依(WOD)随机变量的完全f-矩收敛性,强调了WOD随机变量在解决实际问题中的重要性。与完全矩收敛相比,完全f-矩收敛具有更强的性质。通过引入次线性期望的概念,运用了次线性期望空间下的一系列性质,结合新的容度不等... 基于次线性期望下宽相依(WOD)随机变量的完全f-矩收敛性,强调了WOD随机变量在解决实际问题中的重要性。与完全矩收敛相比,完全f-矩收敛具有更强的性质。通过引入次线性期望的概念,运用了次线性期望空间下的一系列性质,结合新的容度不等式及证明方法,将完全f-矩收敛定理从传统的经典概率空间推广到了更为广阔的次线性期望空间。 展开更多
关键词 次线性期望 宽相依随机变量 完全f-矩收敛
下载PDF
基于局部Transformer的泰语分词和词性标注联合模型
16
作者 朱叶芬 线岩团 +1 位作者 余正涛 相艳 《智能系统学报》 CSCD 北大核心 2024年第2期401-410,共10页
泰语分词和词性标注任务二者之间存在高关联性,已有研究表明将分词和词性标注任务进行联合学习可以有效提升模型性能,为此,提出了一种针对泰语拼写和构词特点的分词和词性标注联合模型。针对泰语中字符构成音节,音节组成词语的特点,采... 泰语分词和词性标注任务二者之间存在高关联性,已有研究表明将分词和词性标注任务进行联合学习可以有效提升模型性能,为此,提出了一种针对泰语拼写和构词特点的分词和词性标注联合模型。针对泰语中字符构成音节,音节组成词语的特点,采用局部Transformer网络从音节序列中学习分词特征;考虑到词根和词缀等音节与词性的关联,将用于分词的音节特征融入词语序列特征,缓解未知词的词性标注特征缺失问题。在此基础上,模型采用线性分类层预测分词标签,采用线性条件随机场建模词性序列的依赖关系。在泰语数据集LST20上的试验结果表明,模型分词F1、词性标注微平均F1和宏平均F1分别达到96.33%、97.06%和85.98%,相较基线模型分别提升了0.33%、0.44%和0.12%。 展开更多
关键词 泰语分词 词性标注 联合学习 局部Transformer 构词特点 音节特征 线性条件随机场 联合模型
下载PDF
The Law of Logarithm for Arrays of Random Variables under Sub-linear Expectations
17
作者 Jia-pan XU Li-xin ZHANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2020年第3期670-688,共19页
Under the framework of sub-linear expectation initiated by Peng,motivated by the concept of extended negative dependence,we establish a law of logarithm for arrays of row-wise extended negatively dependent random vari... Under the framework of sub-linear expectation initiated by Peng,motivated by the concept of extended negative dependence,we establish a law of logarithm for arrays of row-wise extended negatively dependent random variables under weak conditions.Besides,the law of logarithm for independent and identically distributed arrays is derived more precisely and the sufficient and necessary conditions for the law of logarithm are obtained. 展开更多
关键词 sub-linear expectation capacity exponential inequality extended negative dependence the law of logarithm
原文传递
The laws of large numbers for Pareto-type random variables under sub-linear expectation
18
作者 Binxia CHEN Qunying WU 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第5期783-796,共14页
In this paper,some laws of large numbers are established for random variables that satisfy the Pareto distribution,so that the relevant conclusions in the traditional probability space are extended to the sub-linear e... In this paper,some laws of large numbers are established for random variables that satisfy the Pareto distribution,so that the relevant conclusions in the traditional probability space are extended to the sub-linear expectation space.Based on the Pareto distribution,we obtain the weak law of large numbers and strong law of large numbers of the weighted sum of some independent random variable sequences. 展开更多
关键词 sub-linear expectation Pareto type distribution laws of large numbers independent and identical distribution
原文传递
编辑视角下语篇分析的线性表达
19
作者 吴明敏 《嘉兴学院学报》 2024年第1期65-72,共8页
为便于编辑理清语篇内容推进路径,从语篇产生和理解角度入手,首先确定语篇分析基本单位为子目标,其次以一个周期内的句子比跨周期的句子具有更大的概念连贯性理论作为子目标之间的划界依据,最后根据自然顺序及堆栈原理利用子目标勾勒语... 为便于编辑理清语篇内容推进路径,从语篇产生和理解角度入手,首先确定语篇分析基本单位为子目标,其次以一个周期内的句子比跨周期的句子具有更大的概念连贯性理论作为子目标之间的划界依据,最后根据自然顺序及堆栈原理利用子目标勾勒语篇的延展路径图,展示一种语篇多维信息的线性化描述方式。 展开更多
关键词 编辑 语篇分析 子目标 线性表达 堆栈原理
下载PDF
A note on the cluster set of the law of the iterated logarithm under sub-linear expectations
20
作者 Li-Xin Zhang 《Probability, Uncertainty and Quantitative Risk》 2022年第2期85-100,共16页
In this note,we establish a compact law of the iterated logarithm under the upper capacity for independent and identically distributed random variables in a sub-linear expectation space.For showing the result,a self-n... In this note,we establish a compact law of the iterated logarithm under the upper capacity for independent and identically distributed random variables in a sub-linear expectation space.For showing the result,a self-normalized law of the iterated logarithm is established. 展开更多
关键词 sub-linear expectation Capacity Compact law of the iterated logarithm
原文传递
上一页 1 2 16 下一页 到第
使用帮助 返回顶部