目的:针对现有AT(自耦变压器)吸上电流比故障测距方法修正系数通过短路试验获取困难,提出新型修正系数获取方案,以有效提升故障定位精度,加快故障牵引网维修速度,减少供电系统停电时间。方法:通过接触网检测车以及定位设备,获得首末端A...目的:针对现有AT(自耦变压器)吸上电流比故障测距方法修正系数通过短路试验获取困难,提出新型修正系数获取方案,以有效提升故障定位精度,加快故障牵引网维修速度,减少供电系统停电时间。方法:通过接触网检测车以及定位设备,获得首末端AT吸上电流比与接触网检测车位置,基于接触网检测车的位置分布,求解AT吸上电流比分段修正系数。进一步提出AT吸上电流比故障测距的多分段线性化方法,通过细分故障测距分段整定范围,提升故障定位精度。依据AT牵引网工程参数,在MATLAB/Simulink软件上搭建双边供电50 km AT牵引网仿真模型,分别计算基于短路试验的传统AT吸上电流比故障测距方法和基于检测车位置的AT吸上电流比多分段线性化测距方法的测距误差与修正精度,并进行对比分析。结果及结论:仿真试验结果验证了基于AT吸上电流比的多分段线性化故障测距方法的正确性与精确性,故障定位误差由传统方法±300 m范围缩小至±100 m,有效提升了故障定位精度。该方法无需短路试验,减少了传统短路试验测定修正系数方法对牵引网导线与断路器带来的寿命损耗,可应用于牵引网故障分析与故障定位研究。展开更多
文摘目的:针对现有AT(自耦变压器)吸上电流比故障测距方法修正系数通过短路试验获取困难,提出新型修正系数获取方案,以有效提升故障定位精度,加快故障牵引网维修速度,减少供电系统停电时间。方法:通过接触网检测车以及定位设备,获得首末端AT吸上电流比与接触网检测车位置,基于接触网检测车的位置分布,求解AT吸上电流比分段修正系数。进一步提出AT吸上电流比故障测距的多分段线性化方法,通过细分故障测距分段整定范围,提升故障定位精度。依据AT牵引网工程参数,在MATLAB/Simulink软件上搭建双边供电50 km AT牵引网仿真模型,分别计算基于短路试验的传统AT吸上电流比故障测距方法和基于检测车位置的AT吸上电流比多分段线性化测距方法的测距误差与修正精度,并进行对比分析。结果及结论:仿真试验结果验证了基于AT吸上电流比的多分段线性化故障测距方法的正确性与精确性,故障定位误差由传统方法±300 m范围缩小至±100 m,有效提升了故障定位精度。该方法无需短路试验,减少了传统短路试验测定修正系数方法对牵引网导线与断路器带来的寿命损耗,可应用于牵引网故障分析与故障定位研究。