Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet...Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.展开更多
Objective: To detect the aberrant methylation patterns in the CpG islands of p16 and p15 tumor suppressor genes, and to analyze its correlation with pancreatic carcinogenesis and with clinicopathological characterist...Objective: To detect the aberrant methylation patterns in the CpG islands of p16 and p15 tumor suppressor genes, and to analyze its correlation with pancreatic carcinogenesis and with clinicopathological characteristics of patients with pancreatic cancer (PC). Methods: The methylation-specific polymerase chain reaction (MSP) method was used to monitor methylation patterns in the CpG islands of p15 and p16 genes from 29 cases of PC and 3 cases of chronic pancreatitis (CP) paraffin-embedded tissue, as well as 2 cases of normal liver tissues and 12 cases of normal blood samples. Results: p15 and p16 genes were detected to show unmethylation patterns and no amplification using methylation-specific primers in control group. The aberrant methylation rates of p16 in carcinoma tissue and adjacent noncarcinoma tissue were 37.9% (11 of 29 cases) and 34.5% (10 of 29 cases) respectively. Of the 11 aberrant methylated samples, 5 showed complete methylation and 6 hemimethylation. The methylation rates of p15 gene in carcinoma tissue and adjacent noncarcinoma tissue were 27.5% (8/29) and 24.4% (7/29) respectively. Of the 8 aberrant methylated samples, 3 showed complete methylation and 5 hemimethylation. In 6 PC samples, aberrant methylation in CpG islands of both p15 and p16 genes existed simultaneously. The aberrant methylation patterns in CpG islands of p15 and p16 genes had no close correlation with the clinicopathological characteristics (age, sex, smoking, volume of primary tumor, differentiation, clinical stage and histological classification) of the patients with PC (P〉0.05). Conclusion: The aberrant methylation in CpG islands of p15 and p16 genes could be regarded as an early molecular event in PC and had no close correlation with the clinicopathological characteristics of the patients with PC.展开更多
A gene homologous to the human Putative tumor suppressor gone QM, designated OSQM1, was isolated from rice (Oryza sativa L.) genomic DNA library using through homology screening. It contained 4 exons and 3 introns, en...A gene homologous to the human Putative tumor suppressor gone QM, designated OSQM1, was isolated from rice (Oryza sativa L.) genomic DNA library using through homology screening. It contained 4 exons and 3 introns, encoding a protein of 219 amino acids with 46 basic amino acids, leading to a high isoelectric point of 11.02. Homology search showed that this gene existed in eukaryotes and highly conserved throughout eukaryotes, suggesting an essential role of this gene. Northern Not analysis showed that it was expressed in various rice organs, but at lower level in developing flower and callus tissue than in other vegetative organs. Its expression levels in roots and leaves were influenced by different environmental factors.展开更多
AIM: To evaluate the genetic and epigenetic inactivation mechanism of the RASSF1A tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. METHODS: RT-PCR was used to investigate the transcriptional express...AIM: To evaluate the genetic and epigenetic inactivation mechanism of the RASSF1A tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. METHODS: RT-PCR was used to investigate the transcriptional expressing and re-expression of RASSFIA. RASSFIA mutation was analyzed with SSCP and selective sequencing. PCR was performed to detect the loss of heterozygosity (LOH) at the region of chromosome 3p21.3. Genomic DNA were modificated bisulfite and the frequency of methylation of CpG islands in RASSFIA promoter were evaluated by methylation specific PCR (MS-PCR). RESULTS: In all 48 samples and one cell lines of extrahepatic cholangiocarcinoma, the RASSFIA mutation is rare (6.12%, 3/49), 33 samples (68.75%) and QBC-939 cell lines (X2= 14.270, P= 0.001<0.01) showed RASSFIA express inactivation with LOH at microsatellite loci D3S4604. Among these 33 samples and QBC-939, 28 of 33 (84.85%) tumor samples and 1 cell lines were methylated for majority of 16 CpGs, the average frequency is 73.42%. CONCLUSION: The data we present suggest that RASSFIA which we have been searching for at 3p21.3 may be one of the key tumor suppressor gene and play an important role in the pathogenesis of extrahepatic cholangiocarcinoma, and the promoter methylation and allelic loss are the major mechanism for inactivation of RASSFIA.展开更多
AIM:To identify the novel methylation-silenced gene pentraxin 3(PTX3) in esophageal squamous cell carcinoma(ESCC).METHODS:PTX3 mRNA expression was examined in six human ESCC cell lines,one human immortalized normal es...AIM:To identify the novel methylation-silenced gene pentraxin 3(PTX3) in esophageal squamous cell carcinoma(ESCC).METHODS:PTX3 mRNA expression was examined in six human ESCC cell lines,one human immortalized normal esophageal epithelial cell line,primary ESCC tumor tissue,and paired adjacent nontumor tissue using reverse transcription polymerase chain reaction(RTPCR).Semi-quantitative immunohistochemistry was used to examine cellular localisation and protein levels.Methylation specific PCR and bisulphite genomic sequencing were employed to investigate the methylation of the candidate gene.RESULTS:In the majority of ESCC cell lines,we found that PTX3 expression was down-regulated due to gene promoter hypermethylation,which was further confirmed by bisulphite genomic sequencing.Demethylation treatment with 5-aza-2'-deoxycytidine restored PTX3 mRNA expression in ESCC cell lines.Methylation was more common in tumor tissues(85%) than in adjacent nontumor tissues(25%)(P < 0.01).CONCLUSION:PTX3 is down-regulated through promoter hypermethylation in ESCC,and could potentially serve as a biomarker of ESCC.展开更多
Aim:To identify the metastasis suppressor genes for prostate cancer.Methods:A copy of human chromosomeswas introduced into the highly metastatic Dunning R-3327 rat prostate cancer cells by the use of microcell-mediate...Aim:To identify the metastasis suppressor genes for prostate cancer.Methods:A copy of human chromosomeswas introduced into the highly metastatic Dunning R-3327 rat prostate cancer cells by the use of microcell-mediatedchromosome transfer.Relationships between the size of human chromosomes introduced into microcell hybrid clonesand the number of lung metastases produced by the clones were analyzed to determine which part of human chromo-somes contained the metastasis suppressor gene(s)for prostate cancer.To determine portions of human chromosomesintroduced,G-banding chromosomal analysis,fluorescence in sim hybridization analysis,and polymerase chain reac-tion analysis were performed.Results:Each of microcell hybrid clones containing human chromosomes 7,8,10,11,12,or 17 showed decreased ability to metastasize to the lung without any loss of tumorigenicity.This demonstratesthat these human chromosomes contain metastasis suppressor genes for prostate cancer.Spontaneous deletion of portionsof human chromosomes was observed in the human chromosome 7,10,11,12,and 17 studies.In the human chromo-some 8 study,irradiated microcell-mediated chromosome transfer was performed to enrich chromosomal arm deletionsof human chromosome 8.Molecular and cytogenetic analyses of microcell hybrid clones demonstrated that metastasissuppressor genes on human chromosomes were located on 7q21-22,7q31.2-32,8p21-12,10q11-22,11p13-11.2,12p11-q13,12q24-ter,and 17pter-q23.KAII and MKK4/SEKI were identified as metastasis suppressor genes from11p11.2 and 17p12,respectively.Conclusion:This assay system is useful to identify metastasis suppressor gene(s)for prostate cancer.展开更多
Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosom...Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosome. Methods: PCR based microsatellite polymorphism analyses were performed to detect loss of heterozygosity (LOH). Twenty-three loci on chromosome 3 were examined in 20 cases of GBM. Fluorescence-labeled primers and Perkin Elmer 377 DNA Sequencer were applied. Results: 50% informative cases of GBM displayed LOH on chromosome 3. 50% of informative cases displayed LOH on 3q and 35% on 3p. 25.6% of informative loci showed LOH in our series, in which frequent LOH were observed in the chromosomal region from loci D3S1614 (42.9%) to D3S1565 (35.3%) on 3q24–27 and at loci D3S1569 (35.3%) on 3q22–23 and D3S1289 (33.3%) on 3p14.1–14.3. Conclusion: Loss of genetic material on chromosome 3 may play an important part in the tumorigenesis of GBM. The chromosomal regions from loci D3S1614 to D3S1565 on 3q24–27 and at loci D3S1569 on 3q22–23 and D3S1289 on 3p14.1–14.3 are potential sites for novel tumor suppressor genes associated with GBM.展开更多
Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Me...Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Methods: Polymerase chain reaction-based microsatellite analysis was used to assess loss of heterozygosity (LOH) on chromosome 17 in 20 primary glioblastoma multiforme (GBM). Fifteen fluorescent dye-labeled polymorphic markers were used. Results: Thirteen of twenty (65%) GBM displayed LOH on at least one marker of chromosome 17p. Two tumors showed either LOH or non-informativeness on all markers tested. The most frequent LOH was observed at loci including D17s799 (53.3%), D17s1852 (53.8%), D17s938 (63.20/o), D17s831 (55.6%). The loci D17s831 (on 17p13) and D17s799–D17s1852 (17p11.2–p12) are distal and proximal to p53 respectively. The frequencies of LOH at all loci examined on chromosome 17q were relatively low (<30%). None of informative loci exhibited microsatellite instability in this study. Conclusion: Loss of genetic material on chromosome 17p may play an important role in the pathogenesis of GBM. Besides the well-known TSG p53 on 17p, other unknown TSCs associated with GBM may be present on the chromosomal regions 17p13 and 17p11.2–p12, which are distal and proximal to p53 respectively.展开更多
AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.METHODS: Seven fluorescent...AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.METHODS: Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by χ2 test.RESULTS: Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (< 30%) by detailed deletion mapping. Significant opposite difference was observed between LOH frequency and tumor diameter on D4S412 and D4S1546 locus (0% vs 16.67%, P = 0.041; 54.55% vs 11.11%, P = 0.034, respectively). On D4S403 locus, LOH was significantly associated with tumor gross pattern (11.11%, 0, 33.33%, P = 0.030). No relationship was detected on other loci compared with clinicopathologial features.CONCLUSION: By deletion mapping, two obvious high frequency LOH regions spanning D4S3013 (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).展开更多
Data obtained in experimental cutaneous melanomas have suggested that the nm23 gene may function as a metastasis suppressor gene. The nm23 level in 8 human cutaneous melanoma cell lines and 2 murine melanoma cell line...Data obtained in experimental cutaneous melanomas have suggested that the nm23 gene may function as a metastasis suppressor gene. The nm23 level in 8 human cutaneous melanoma cell lines and 2 murine melanoma cell lines were examined. Each melanoma cell line was transplanted subcutaneously into the flank of nude mice, and the metastatic behavior was evaluated by counting lung tumor fool and by determining host survival time. It was found that expression of 'm23 mRNA in human melanomas is correlated closely with reduced metastatic behavior in experimental animals and may serve as a sensitive prognostic indicator of malignancy and survival in patients with melanomas.展开更多
AIM To analyse cumulative loss of heterozygosity (LOH) of chromosomal regions and tumor suppressor genes in hepatocellular carcinomas (HCCs) from 20 southern African blacks. METHODS p53, RB1, BRCA1, BRCA2, WT1 and E c...AIM To analyse cumulative loss of heterozygosity (LOH) of chromosomal regions and tumor suppressor genes in hepatocellular carcinomas (HCCs) from 20 southern African blacks. METHODS p53, RB1, BRCA1, BRCA2, WT1 and E cadherin genes were analysed for LOH, and p53 gene was also analysed for the codon 249 mutation, in tumor and adjacent non tumorous liver tissues using molecular techniques and 10 polymorphic microsatellite markers. RESULTS p53 codon 249 mutation was found in 25% of the subjects, as was expected, because many patients were from Mozambique, a country with high aflatoxin B 1 exposure. LOH was found at the RB1, BRCA2 and WT1 loci in 20%(4/*!20) of the HCCs, supporting a possible role of these genes in HCC. No LOH was evident in any of the remaining genes. Reports of mutations of p53 and RB1 genes in combination, described in other populations, were not confirmed in this study. Change in microsatellite repeat number was noted at 9/*!10 microsatellite loci in different HCCs, and changes at two or more loci were detected in 15%(3/*!20) of subjects. CONCLUSION We propose that microsatellite/genomic instability may play a role in the pathogenesis of a subset of HCCs in black Africans.展开更多
Esophageal squamous cell carcinoma(ESCC) is a prevalent and fatal cancer in China and other Asian countries.Epigenetic silencing of key tumor suppressor genes(TSGs) is critical to ESCC initiation and progression.Recen...Esophageal squamous cell carcinoma(ESCC) is a prevalent and fatal cancer in China and other Asian countries.Epigenetic silencing of key tumor suppressor genes(TSGs) is critical to ESCC initiation and progression.Recently,many novel TSGs silenced by promoter methylation have been identified in ESCC,and these genes further serve as potential tumor markers for high-risk group stratification,early detection,and prognosis prediction.This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC,providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.展开更多
Nasopharyngeal carcinoma (NPC) is among the most common malignancies in southern China.Deletion of genomic DNA,which occurs during the complex pathogenesis process for NPC,represents a pivotal mechanism in the inactiv...Nasopharyngeal carcinoma (NPC) is among the most common malignancies in southern China.Deletion of genomic DNA,which occurs during the complex pathogenesis process for NPC,represents a pivotal mechanism in the inactivation of tumor suppressor genes (TSGs).In many circumstances,loss of TSGs can be detected as diagnostic and prognostic markers in cancer.The short arm of chromosome 3 (3p) is a frequently deleted chromosomal region in NPC,with 3p21.1-21.2 and 3p25.2-26.1 being the most frequently deleted minimal regions.In recent years,our research group and others have focused on the identification and characterization of novel target TSGs at 3p,such as RASSF1A,BLU,RBMS3,and CHL1,in the development and progression of NPC.In this review,we summarize recent findings of TSGs at 3p and discuss some of these genes in detail.A better understanding of TSGs at 3p will significantly improve our understanding of NPC pathogenesis,diagnosis,and treatment.展开更多
Gastric cancer is one of the most common malignancies and a leading cause of cancer mortality worldwide.The pathogenesis mechanisms of gastric cancer are still not fully clear.Inactivation of tumor suppressor genes an...Gastric cancer is one of the most common malignancies and a leading cause of cancer mortality worldwide.The pathogenesis mechanisms of gastric cancer are still not fully clear.Inactivation of tumor suppressor genes and activation of oncogenes caused by genetic and epigenetic alterations are known to play significant roles in carcinogenesis.Accumulating evidence has shown that epigenetic silencing of the tumor suppressor genes,particularly caused by hypermethylation of CpG islands in promoters,is critical to carcinogenesis and metastasis.Here,we review the recent progress in the study of methylations of tumor suppressor genes involved in the pathogenesis of gastric cancer.We also briefly describe the mechanisms that induce tumor suppressor gene methylation and the status of translating these molecular mechanisms into clinical applications.展开更多
The multifactorial and multistage pathogenesis of hepatocellular carcinoma(HCC)has fascinated a wide spectrum of scientists for decades.While a number of major risk factors have been identified,their mechanistic roles...The multifactorial and multistage pathogenesis of hepatocellular carcinoma(HCC)has fascinated a wide spectrum of scientists for decades.While a number of major risk factors have been identified,their mechanistic roles in hepatocarcinogenesis still need to be elucidated.Many tumor suppressor genes(TSGs)have been identified as being involved in HCC.These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors:the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele.Hepatitis B virus(HBV)is one of the most important risk factors associated with HCC.Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor,one advantage of mouse models for HBV/HCC research is the numerous and powerfulgenetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs.Here,we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner.Discoveries obtained using mouse models will have a great impact on HCC translational medicine.展开更多
INTRODUCTIONHepatocellular carcinoma (HCC) is one of the mostcommon human malignancies worldwide[1,2], and isclosely associated with infection of HBV and HCVand contamination of aflatoxin B1[3-6]. Althoughthe molecula...INTRODUCTIONHepatocellular carcinoma (HCC) is one of the mostcommon human malignancies worldwide[1,2], and isclosely associated with infection of HBV and HCVand contamination of aflatoxin B1[3-6]. Althoughthe molecular mechanisms of hepatocarcinogenesisremain poorly understood, an increasing number ofgenetic abnormalities have been recognized[7-10],for example, the p16 gene[11,12] the p53gene[13-18], the E-cadherin gene[19], and the c-mycgene[20].展开更多
Objective: To explore the changes and significance of tumor suppressor gene p53 in primary hepatocellu-lar carcinoma (PHC ) with hepatitis B virus (HBV ) infection. Methods: Tumor tissues and surrounding nontumortissu...Objective: To explore the changes and significance of tumor suppressor gene p53 in primary hepatocellu-lar carcinoma (PHC ) with hepatitis B virus (HBV ) infection. Methods: Tumor tissues and surrounding nontumortissues of sixteen PHC cases were studied by Southern hybridization to detect the state of HBV-DNA in tissues, byimmunohistochemical staining to determine HBsAg, HBxAg and p53 protein, and by PCR directed sequencing toanalyse the point mutation of p53 gene exons 5 to 8. Results: Among the 16 cases. 13 cases were HBV-DNA posi-tive, 10 tumor cases and 13 nontumor tissues cases HBxAg positive, and 9 cases posltive for p53 protein. The se-quencing of p53 gene point mutation was found in 5 cases, only one of which was sited at codon 249 G to T. Con-clusion: The mutation of p53 gene codon 249 is infrequent in HBV related PHC,indicating the accumulation of p53protein in cells may be associated with expression of HBxAg. HBxAg binding to p53 protein and inactivation of p53function play important roles in the development of PHC.展开更多
To observe the relationship between tumor suppressor gene p16 expression and ovarian cancer occurrence and development. Metbods: Using ABC immunohistochemistry method, we investigated the expression of p16 in 72 cases...To observe the relationship between tumor suppressor gene p16 expression and ovarian cancer occurrence and development. Metbods: Using ABC immunohistochemistry method, we investigated the expression of p16 in 72 cases of ovarian neoplasm. Results: The positive rates of p16 in malignant, benign, borderline tumors and normal ovarian tissue were 7. 89%, 60.00%, 66. 67% and 83. 33%, respectively (P<0.01). In the cases whose tumors were more malignant and poorly differentiated, and who relapsed and died, the positive stainings were not discovered. Conclusiou: p16 is well related with the occurrence and development of malignant ovarian tumor.展开更多
FUS1 is a novel candidate tumor suppressor gene identified in human chromosome 3p21.3. Its expression showed significantly reduction or even loss in lung cancer and other types of cancers. In order to further investig...FUS1 is a novel candidate tumor suppressor gene identified in human chromosome 3p21.3. Its expression showed significantly reduction or even loss in lung cancer and other types of cancers. In order to further investigate the biological function of FUS1 protein, FUS1 cDNA from MRC-5 cells was amplified by RT-PCR and cloned into prokaryotic expression vector pQE-30. The recombinant expression plasmids were transformed into M15 strain and grown at 20℃ or 37℃. SDS–PAGE analysis revealed that the accumulation of the recombinant protein FUS1 (rFUS1) in inclusion body forms reached maxium amount when induced with 0.5 mM IPTG for 5 h at 37℃. The inclusion bodies were solubilized in 2M urea and purified by a 6 ×His tagged affinity column under denaturing condition. The purified rFUS1 was identified by electrospray ionization-mass spectrometry (ESI-MS) and tested for purity by HPLC chromatography. The purified rFUS1 proteins were then used to immunize rabbits to obtain anti-human FUS1 polyclonal antibodies, which were suitable to detect both the recombinant exogenous FUS1 and the endogenous FUS1 from tissues and cells by western blot and immunohistochemistry, Available purified rFUS1 proteins and self-prepared polyclonal antibodies against FUS1 may provide effective tools for further studies on biological function and application of FUS1.展开更多
Objective: To clone tumor suppressor gene Fhit from normal human appendix’s tissue and construct its cloning vector. Methods: Extract human total RNA with TRIzol reagent and amplification the Fhit gene with reverse t...Objective: To clone tumor suppressor gene Fhit from normal human appendix’s tissue and construct its cloning vector. Methods: Extract human total RNA with TRIzol reagent and amplification the Fhit gene with reverse transcription-PCR (RT-PCR), then clone Fhit into a pGEM-T easy cloning vector, lastly identify the pGEM-Fhit vector with polymerase chain reaction (PCR), endonuclease digestion and DNA sequencing. Results: Fhit complementary DNA (cDNA) was cloned into pGEM-T vector, and DNA sequencing was the same as reported. Conclusions: The cloning vector pGEM-Fhit was constructed successfully and builds up a good foundation going deep into the study of Fhit.展开更多
基金supported by the Taipei Tzu Chi Hospital through grants from the Buddhist Tzu Chi Medical Foundation under the Numbers TCRD-TPE-111-23(2/3)and TCRD-TPE-113-20,Taipei,Taiwan.
文摘Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.
文摘Objective: To detect the aberrant methylation patterns in the CpG islands of p16 and p15 tumor suppressor genes, and to analyze its correlation with pancreatic carcinogenesis and with clinicopathological characteristics of patients with pancreatic cancer (PC). Methods: The methylation-specific polymerase chain reaction (MSP) method was used to monitor methylation patterns in the CpG islands of p15 and p16 genes from 29 cases of PC and 3 cases of chronic pancreatitis (CP) paraffin-embedded tissue, as well as 2 cases of normal liver tissues and 12 cases of normal blood samples. Results: p15 and p16 genes were detected to show unmethylation patterns and no amplification using methylation-specific primers in control group. The aberrant methylation rates of p16 in carcinoma tissue and adjacent noncarcinoma tissue were 37.9% (11 of 29 cases) and 34.5% (10 of 29 cases) respectively. Of the 11 aberrant methylated samples, 5 showed complete methylation and 6 hemimethylation. The methylation rates of p15 gene in carcinoma tissue and adjacent noncarcinoma tissue were 27.5% (8/29) and 24.4% (7/29) respectively. Of the 8 aberrant methylated samples, 3 showed complete methylation and 5 hemimethylation. In 6 PC samples, aberrant methylation in CpG islands of both p15 and p16 genes existed simultaneously. The aberrant methylation patterns in CpG islands of p15 and p16 genes had no close correlation with the clinicopathological characteristics (age, sex, smoking, volume of primary tumor, differentiation, clinical stage and histological classification) of the patients with PC (P〉0.05). Conclusion: The aberrant methylation in CpG islands of p15 and p16 genes could be regarded as an early molecular event in PC and had no close correlation with the clinicopathological characteristics of the patients with PC.
文摘A gene homologous to the human Putative tumor suppressor gone QM, designated OSQM1, was isolated from rice (Oryza sativa L.) genomic DNA library using through homology screening. It contained 4 exons and 3 introns, encoding a protein of 219 amino acids with 46 basic amino acids, leading to a high isoelectric point of 11.02. Homology search showed that this gene existed in eukaryotes and highly conserved throughout eukaryotes, suggesting an essential role of this gene. Northern Not analysis showed that it was expressed in various rice organs, but at lower level in developing flower and callus tissue than in other vegetative organs. Its expression levels in roots and leaves were influenced by different environmental factors.
基金Supported by the National High Technology Research and Development Program of China (863 Program), No. 2002AA214061
文摘AIM: To evaluate the genetic and epigenetic inactivation mechanism of the RASSF1A tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. METHODS: RT-PCR was used to investigate the transcriptional expressing and re-expression of RASSFIA. RASSFIA mutation was analyzed with SSCP and selective sequencing. PCR was performed to detect the loss of heterozygosity (LOH) at the region of chromosome 3p21.3. Genomic DNA were modificated bisulfite and the frequency of methylation of CpG islands in RASSFIA promoter were evaluated by methylation specific PCR (MS-PCR). RESULTS: In all 48 samples and one cell lines of extrahepatic cholangiocarcinoma, the RASSFIA mutation is rare (6.12%, 3/49), 33 samples (68.75%) and QBC-939 cell lines (X2= 14.270, P= 0.001<0.01) showed RASSFIA express inactivation with LOH at microsatellite loci D3S4604. Among these 33 samples and QBC-939, 28 of 33 (84.85%) tumor samples and 1 cell lines were methylated for majority of 16 CpGs, the average frequency is 73.42%. CONCLUSION: The data we present suggest that RASSFIA which we have been searching for at 3p21.3 may be one of the key tumor suppressor gene and play an important role in the pathogenesis of extrahepatic cholangiocarcinoma, and the promoter methylation and allelic loss are the major mechanism for inactivation of RASSFIA.
基金Supported by National High Technology Research and Development Program of China (863 Program),No. 2007AA02Z4Z4China Postdoctoral Science Foundation,No. 20090460394Beijing Municipal Natural Science Foundation,No. 7072022
文摘AIM:To identify the novel methylation-silenced gene pentraxin 3(PTX3) in esophageal squamous cell carcinoma(ESCC).METHODS:PTX3 mRNA expression was examined in six human ESCC cell lines,one human immortalized normal esophageal epithelial cell line,primary ESCC tumor tissue,and paired adjacent nontumor tissue using reverse transcription polymerase chain reaction(RTPCR).Semi-quantitative immunohistochemistry was used to examine cellular localisation and protein levels.Methylation specific PCR and bisulphite genomic sequencing were employed to investigate the methylation of the candidate gene.RESULTS:In the majority of ESCC cell lines,we found that PTX3 expression was down-regulated due to gene promoter hypermethylation,which was further confirmed by bisulphite genomic sequencing.Demethylation treatment with 5-aza-2'-deoxycytidine restored PTX3 mRNA expression in ESCC cell lines.Methylation was more common in tumor tissues(85%) than in adjacent nontumor tissues(25%)(P < 0.01).CONCLUSION:PTX3 is down-regulated through promoter hypermethylation in ESCC,and could potentially serve as a biomarker of ESCC.
基金These studies were supported in part by Grant-in-Aid for Scientific Research(A)from Japan Sociely for the Promotion of Science(11307029)Grant-in-Aid of The Japan Medical Association(1999).
文摘Aim:To identify the metastasis suppressor genes for prostate cancer.Methods:A copy of human chromosomeswas introduced into the highly metastatic Dunning R-3327 rat prostate cancer cells by the use of microcell-mediatedchromosome transfer.Relationships between the size of human chromosomes introduced into microcell hybrid clonesand the number of lung metastases produced by the clones were analyzed to determine which part of human chromo-somes contained the metastasis suppressor gene(s)for prostate cancer.To determine portions of human chromosomesintroduced,G-banding chromosomal analysis,fluorescence in sim hybridization analysis,and polymerase chain reac-tion analysis were performed.Results:Each of microcell hybrid clones containing human chromosomes 7,8,10,11,12,or 17 showed decreased ability to metastasize to the lung without any loss of tumorigenicity.This demonstratesthat these human chromosomes contain metastasis suppressor genes for prostate cancer.Spontaneous deletion of portionsof human chromosomes was observed in the human chromosome 7,10,11,12,and 17 studies.In the human chromo-some 8 study,irradiated microcell-mediated chromosome transfer was performed to enrich chromosomal arm deletionsof human chromosome 8.Molecular and cytogenetic analyses of microcell hybrid clones demonstrated that metastasissuppressor genes on human chromosomes were located on 7q21-22,7q31.2-32,8p21-12,10q11-22,11p13-11.2,12p11-q13,12q24-ter,and 17pter-q23.KAII and MKK4/SEKI were identified as metastasis suppressor genes from11p11.2 and 17p12,respectively.Conclusion:This assay system is useful to identify metastasis suppressor gene(s)for prostate cancer.
文摘Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosome. Methods: PCR based microsatellite polymorphism analyses were performed to detect loss of heterozygosity (LOH). Twenty-three loci on chromosome 3 were examined in 20 cases of GBM. Fluorescence-labeled primers and Perkin Elmer 377 DNA Sequencer were applied. Results: 50% informative cases of GBM displayed LOH on chromosome 3. 50% of informative cases displayed LOH on 3q and 35% on 3p. 25.6% of informative loci showed LOH in our series, in which frequent LOH were observed in the chromosomal region from loci D3S1614 (42.9%) to D3S1565 (35.3%) on 3q24–27 and at loci D3S1569 (35.3%) on 3q22–23 and D3S1289 (33.3%) on 3p14.1–14.3. Conclusion: Loss of genetic material on chromosome 3 may play an important part in the tumorigenesis of GBM. The chromosomal regions from loci D3S1614 to D3S1565 on 3q24–27 and at loci D3S1569 on 3q22–23 and D3S1289 on 3p14.1–14.3 are potential sites for novel tumor suppressor genes associated with GBM.
文摘Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Methods: Polymerase chain reaction-based microsatellite analysis was used to assess loss of heterozygosity (LOH) on chromosome 17 in 20 primary glioblastoma multiforme (GBM). Fifteen fluorescent dye-labeled polymorphic markers were used. Results: Thirteen of twenty (65%) GBM displayed LOH on at least one marker of chromosome 17p. Two tumors showed either LOH or non-informativeness on all markers tested. The most frequent LOH was observed at loci including D17s799 (53.3%), D17s1852 (53.8%), D17s938 (63.20/o), D17s831 (55.6%). The loci D17s831 (on 17p13) and D17s799–D17s1852 (17p11.2–p12) are distal and proximal to p53 respectively. The frequencies of LOH at all loci examined on chromosome 17q were relatively low (<30%). None of informative loci exhibited microsatellite instability in this study. Conclusion: Loss of genetic material on chromosome 17p may play an important role in the pathogenesis of GBM. Besides the well-known TSG p53 on 17p, other unknown TSCs associated with GBM may be present on the chromosomal regions 17p13 and 17p11.2–p12, which are distal and proximal to p53 respectively.
基金Supported by The National Natural Science Foundation of China, No. 30080016 and No. 30470977
文摘AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.METHODS: Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by χ2 test.RESULTS: Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (< 30%) by detailed deletion mapping. Significant opposite difference was observed between LOH frequency and tumor diameter on D4S412 and D4S1546 locus (0% vs 16.67%, P = 0.041; 54.55% vs 11.11%, P = 0.034, respectively). On D4S403 locus, LOH was significantly associated with tumor gross pattern (11.11%, 0, 33.33%, P = 0.030). No relationship was detected on other loci compared with clinicopathologial features.CONCLUSION: By deletion mapping, two obvious high frequency LOH regions spanning D4S3013 (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).
文摘Data obtained in experimental cutaneous melanomas have suggested that the nm23 gene may function as a metastasis suppressor gene. The nm23 level in 8 human cutaneous melanoma cell lines and 2 murine melanoma cell lines were examined. Each melanoma cell line was transplanted subcutaneously into the flank of nude mice, and the metastatic behavior was evaluated by counting lung tumor fool and by determining host survival time. It was found that expression of 'm23 mRNA in human melanomas is correlated closely with reduced metastatic behavior in experimental animals and may serve as a sensitive prognostic indicator of malignancy and survival in patients with melanomas.
文摘AIM To analyse cumulative loss of heterozygosity (LOH) of chromosomal regions and tumor suppressor genes in hepatocellular carcinomas (HCCs) from 20 southern African blacks. METHODS p53, RB1, BRCA1, BRCA2, WT1 and E cadherin genes were analysed for LOH, and p53 gene was also analysed for the codon 249 mutation, in tumor and adjacent non tumorous liver tissues using molecular techniques and 10 polymorphic microsatellite markers. RESULTS p53 codon 249 mutation was found in 25% of the subjects, as was expected, because many patients were from Mozambique, a country with high aflatoxin B 1 exposure. LOH was found at the RB1, BRCA2 and WT1 loci in 20%(4/*!20) of the HCCs, supporting a possible role of these genes in HCC. No LOH was evident in any of the remaining genes. Reports of mutations of p53 and RB1 genes in combination, described in other populations, were not confirmed in this study. Change in microsatellite repeat number was noted at 9/*!10 microsatellite loci in different HCCs, and changes at two or more loci were detected in 15%(3/*!20) of subjects. CONCLUSION We propose that microsatellite/genomic instability may play a role in the pathogenesis of a subset of HCCs in black Africans.
基金supported by NSFC Joint Research Fund for Hong Kong and Macao Young Scholars(No.30928012)National Natural Science Foundation of China(No.81071634,81172582,and 30801344)Shenzhen Science Fund for Distinguished Young Scholars(No.JC201005270328A)
文摘Esophageal squamous cell carcinoma(ESCC) is a prevalent and fatal cancer in China and other Asian countries.Epigenetic silencing of key tumor suppressor genes(TSGs) is critical to ESCC initiation and progression.Recently,many novel TSGs silenced by promoter methylation have been identified in ESCC,and these genes further serve as potential tumor markers for high-risk group stratification,early detection,and prognosis prediction.This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC,providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.
文摘Nasopharyngeal carcinoma (NPC) is among the most common malignancies in southern China.Deletion of genomic DNA,which occurs during the complex pathogenesis process for NPC,represents a pivotal mechanism in the inactivation of tumor suppressor genes (TSGs).In many circumstances,loss of TSGs can be detected as diagnostic and prognostic markers in cancer.The short arm of chromosome 3 (3p) is a frequently deleted chromosomal region in NPC,with 3p21.1-21.2 and 3p25.2-26.1 being the most frequently deleted minimal regions.In recent years,our research group and others have focused on the identification and characterization of novel target TSGs at 3p,such as RASSF1A,BLU,RBMS3,and CHL1,in the development and progression of NPC.In this review,we summarize recent findings of TSGs at 3p and discuss some of these genes in detail.A better understanding of TSGs at 3p will significantly improve our understanding of NPC pathogenesis,diagnosis,and treatment.
基金supported by grants from National Natural Science Foundation of China(No.30770920 and 81071651)Zhejiang Provincial Natural Science Foundation of China(No.R2100213,2009C33142,Z2090056 and WKJ2009-2-028)973 Project(No.2010CB834300)
文摘Gastric cancer is one of the most common malignancies and a leading cause of cancer mortality worldwide.The pathogenesis mechanisms of gastric cancer are still not fully clear.Inactivation of tumor suppressor genes and activation of oncogenes caused by genetic and epigenetic alterations are known to play significant roles in carcinogenesis.Accumulating evidence has shown that epigenetic silencing of the tumor suppressor genes,particularly caused by hypermethylation of CpG islands in promoters,is critical to carcinogenesis and metastasis.Here,we review the recent progress in the study of methylations of tumor suppressor genes involved in the pathogenesis of gastric cancer.We also briefly describe the mechanisms that induce tumor suppressor gene methylation and the status of translating these molecular mechanisms into clinical applications.
基金Supported by Research grants from the Ministry of Science and Technology(MOST)in Taiwan,No.NSC99-2628-B-010-001-MY3,MOST 103-2321-B-010-003,MOST 103-2633-H-010-001,MOST 103-2633-B-400-002 and MOST104-3011-B-010-001a grant from the Ministry of Education,Aim for the Top University Plan
文摘The multifactorial and multistage pathogenesis of hepatocellular carcinoma(HCC)has fascinated a wide spectrum of scientists for decades.While a number of major risk factors have been identified,their mechanistic roles in hepatocarcinogenesis still need to be elucidated.Many tumor suppressor genes(TSGs)have been identified as being involved in HCC.These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors:the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele.Hepatitis B virus(HBV)is one of the most important risk factors associated with HCC.Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor,one advantage of mouse models for HBV/HCC research is the numerous and powerfulgenetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs.Here,we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner.Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
基金Project supported partly by the National Natural Science Foundation of China, No. 39870344
文摘INTRODUCTIONHepatocellular carcinoma (HCC) is one of the mostcommon human malignancies worldwide[1,2], and isclosely associated with infection of HBV and HCVand contamination of aflatoxin B1[3-6]. Althoughthe molecular mechanisms of hepatocarcinogenesisremain poorly understood, an increasing number ofgenetic abnormalities have been recognized[7-10],for example, the p16 gene[11,12] the p53gene[13-18], the E-cadherin gene[19], and the c-mycgene[20].
文摘Objective: To explore the changes and significance of tumor suppressor gene p53 in primary hepatocellu-lar carcinoma (PHC ) with hepatitis B virus (HBV ) infection. Methods: Tumor tissues and surrounding nontumortissues of sixteen PHC cases were studied by Southern hybridization to detect the state of HBV-DNA in tissues, byimmunohistochemical staining to determine HBsAg, HBxAg and p53 protein, and by PCR directed sequencing toanalyse the point mutation of p53 gene exons 5 to 8. Results: Among the 16 cases. 13 cases were HBV-DNA posi-tive, 10 tumor cases and 13 nontumor tissues cases HBxAg positive, and 9 cases posltive for p53 protein. The se-quencing of p53 gene point mutation was found in 5 cases, only one of which was sited at codon 249 G to T. Con-clusion: The mutation of p53 gene codon 249 is infrequent in HBV related PHC,indicating the accumulation of p53protein in cells may be associated with expression of HBxAg. HBxAg binding to p53 protein and inactivation of p53function play important roles in the development of PHC.
文摘To observe the relationship between tumor suppressor gene p16 expression and ovarian cancer occurrence and development. Metbods: Using ABC immunohistochemistry method, we investigated the expression of p16 in 72 cases of ovarian neoplasm. Results: The positive rates of p16 in malignant, benign, borderline tumors and normal ovarian tissue were 7. 89%, 60.00%, 66. 67% and 83. 33%, respectively (P<0.01). In the cases whose tumors were more malignant and poorly differentiated, and who relapsed and died, the positive stainings were not discovered. Conclusiou: p16 is well related with the occurrence and development of malignant ovarian tumor.
文摘FUS1 is a novel candidate tumor suppressor gene identified in human chromosome 3p21.3. Its expression showed significantly reduction or even loss in lung cancer and other types of cancers. In order to further investigate the biological function of FUS1 protein, FUS1 cDNA from MRC-5 cells was amplified by RT-PCR and cloned into prokaryotic expression vector pQE-30. The recombinant expression plasmids were transformed into M15 strain and grown at 20℃ or 37℃. SDS–PAGE analysis revealed that the accumulation of the recombinant protein FUS1 (rFUS1) in inclusion body forms reached maxium amount when induced with 0.5 mM IPTG for 5 h at 37℃. The inclusion bodies were solubilized in 2M urea and purified by a 6 ×His tagged affinity column under denaturing condition. The purified rFUS1 was identified by electrospray ionization-mass spectrometry (ESI-MS) and tested for purity by HPLC chromatography. The purified rFUS1 proteins were then used to immunize rabbits to obtain anti-human FUS1 polyclonal antibodies, which were suitable to detect both the recombinant exogenous FUS1 and the endogenous FUS1 from tissues and cells by western blot and immunohistochemistry, Available purified rFUS1 proteins and self-prepared polyclonal antibodies against FUS1 may provide effective tools for further studies on biological function and application of FUS1.
文摘Objective: To clone tumor suppressor gene Fhit from normal human appendix’s tissue and construct its cloning vector. Methods: Extract human total RNA with TRIzol reagent and amplification the Fhit gene with reverse transcription-PCR (RT-PCR), then clone Fhit into a pGEM-T easy cloning vector, lastly identify the pGEM-Fhit vector with polymerase chain reaction (PCR), endonuclease digestion and DNA sequencing. Results: Fhit complementary DNA (cDNA) was cloned into pGEM-T vector, and DNA sequencing was the same as reported. Conclusions: The cloning vector pGEM-Fhit was constructed successfully and builds up a good foundation going deep into the study of Fhit.