Surface enhanced Raman scattering (SERS) spectroscopy was first utilized to study the photo-orientation behaviour of the photoreactive groups on a novel photo-alignment film surface and elucidate the generation mechan...Surface enhanced Raman scattering (SERS) spectroscopy was first utilized to study the photo-orientation behaviour of the photoreactive groups on a novel photo-alignment film surface and elucidate the generation mechanism of pretilt angle. The novel photo-alignment film was prepared by spin-coating a solution of ladderlike polysiloxane (LPS) bearing dual photoreactive group on an ITO surface and by irradiation with linear-polarized ultraviolet (LPUV) light A Si—H terminal compound (M) containing an identical photosensitive part has been used to fabricate a model film for SERS investigation.展开更多
The effect of solvent on surface enhanced Raman scattering [SERS) of colloidal silver has been studied. Experiments show that the intensity of SERS is related to the polarity and molecular constitution of the solvent....The effect of solvent on surface enhanced Raman scattering [SERS) of colloidal silver has been studied. Experiments show that the intensity of SERS is related to the polarity and molecular constitution of the solvent. The influence of solvent is due to the change of the adsorption quantity and adsorption intensity.展开更多
Raman spectrum is a powerful analytical tool for determining the chemical information of compounds. In this study, we obtained analytical results of chlorophenols(CPs) molecules including 4-chlorophenol(4-CP), 2,6...Raman spectrum is a powerful analytical tool for determining the chemical information of compounds. In this study, we obtained analytical results of chlorophenols(CPs) molecules including 4-chlorophenol(4-CP), 2,6-dich- lorophenol(2,6-DCP) and 2,4,6-trichlorophenol(2,4,6-TCP) on the surface of Ag dendrites by surface-enhanced Raman scattering(SERS) spectra. SEM images indicate that the SERS substrate of Ag dendrites is composed of a large number of polygonal nanocrystallites, which self-assembled into a 3D hierarchical structure. It was found that there were distinct differences for those three molecules from Raman and SERS spectra. This indicates that SERS could be a new tool of detection technique regarding trace amounts of CPs.展开更多
We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monit...We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monitor the reaction process of the formation of Ag on the surfaces of silica beads,and the optical resonance of the substrate could shift from visible to NIR region.It has been found that surface-enhanced Raman scattering(SERS) enhancement changes with the electroless plating time and the SSCS substrate with the plating time of 90 s(90SSCS) shows the strongest SERS response under the laser excitation at 514.5 nm.Signals collected over multiple spots and substrate of rhodamine 6G(R6G) resulted in a relative standard deviation(RSD) of 9.75%.The calculated enhancement factor(EF) was approximately 105 "106.SSCS substrate exhibits high SERS performance,which is due to electromagnetic SERS enhancement with additional localization field within closely packed Ag nanoparticles decorated on the SiO2 nanoparticles.And this substrate presents tunable and broad localized surface plasmon resonance(LSPR),so this method may open a new way for SERS studies with other laser excitation.展开更多
For the first time, Mo nanoscrew was cultivated as a novel non-coinage-metal substrate for surface-enhanced Raman scattering(SERS). It was found that the nanoscrew is composed of many small screw threads stacking alon...For the first time, Mo nanoscrew was cultivated as a novel non-coinage-metal substrate for surface-enhanced Raman scattering(SERS). It was found that the nanoscrew is composed of many small screw threads stacking along its length direction with small separations. Under external light excitation, strong electromagnetic coupling was initiated within the gaps, and many hot-spots formed on the surface of the nanoscrew, which was confirmed by high-resolution scanning near-field optical microscope measurements and numerical simulations using finite element method. These hotspots are responsible for the observed SERS activity of the nanoscrews. Raman mapping characterizations further revealed the excellent reproducibility of the SERS activity. Our findings may pave the way for design of low-cost and stable SERS substrates.展开更多
To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this stu...To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this study,three kinds of calibration algorithms were used to quantitative analysis of the mixture of naphthalene(Nap),phenanthrene(Phe),and pyrene(Pyr).Firstly,partial least squares(PLS)algorithm was used to select characteristic variables,then the global search capability of genetic algorithm(GA)was used for the determining of the initial weights and thresholds of back propagation(BP)neural network so that local minima was avoided.The PLS-GA-BP model exhibited superiority to quantify PAHs mixture,which achieved R2=0.9975,0.9710,0.9643,ARE=10.07%,19.28%,16.72%and RMSE=13.10,5.40,5.10 nmol L−1 for Nap,Phe,Pyr(in the PAHs mixture)concentration prediction respectively.The forecast error,ARE and RMSE have been reduced more than 50%and 60%respectively compared with the whole spectral BP model.The study indicates that accurate quantitative spectroscopic analysis of the mixture of PAHs samples can be achieved through the combination of SERS technique and PLS-GA-BP algorithm.展开更多
In this paper,we report the study of surface-enhanced Raman Scattering of C_(60)films on roughed Ag,Cu and glass surface.The experiment results indicate that the C_(60)films on Ag substrate possess large enhance effec...In this paper,we report the study of surface-enhanced Raman Scattering of C_(60)films on roughed Ag,Cu and glass surface.The experiment results indicate that the C_(60)films on Ag substrate possess large enhance effect.An explanation of the enhancement with roughed glass surface is proposed based on waveguide Raman Scattering.展开更多
We describe the synthesis of three-dimensional(3D) multilayer ZnO@Ag/SiO2@Ag nanorod arrays by the physico–chemical method. The surface-enhanced Raman scattering(SERS) performance of the 3D multilayer Zn O@Ag/SiO2@Ag...We describe the synthesis of three-dimensional(3D) multilayer ZnO@Ag/SiO2@Ag nanorod arrays by the physico–chemical method. The surface-enhanced Raman scattering(SERS) performance of the 3D multilayer Zn O@Ag/SiO2@Ag nanorod arrays is studied by varying the thickness of dielectric layer SiO2 and outer-layer noble Ag. The 3D Zn O@Ag/SiO2@Ag nanorod arrays create a huge number of SERS "hot spots" that mainly contribute to the high SERS sensitivity. The great enhancement of SERS results from the electron transfer between ZnO and Ag and different electromagnetic enhancements of Ag nanoparticles(NPs) with different thicknesses. Through the finite-difference time-domain(FDTD) theoretical simulation, the enhancement of SERS signal can be ascribed to a strong electric field enhancement produced in the 3D framework. The simplicity and generality of our method offer great advantages for further understanding the SERS mechanism induced by the surface plasmon resonance(SPR) effect.展开更多
In this paper, a novel surface-enhanced Raman scattering (SERS) sensor combined with fused biconical taper fiber (FBTF) and film coated with silver sols is proposed. This structure is designed to significantly inc...In this paper, a novel surface-enhanced Raman scattering (SERS) sensor combined with fused biconical taper fiber (FBTF) and film coated with silver sols is proposed. This structure is designed to significantly increase the SERS active surface when the length of the taper is increased and the radius is reduced, since the penetration depth is inversely proportional to the taper radius and proportional to the taper length according to the fiber-optic evanescent-wave theory. Based on the SERS sensing principle, the feasibility of FBTF sensor is analyzed in this paper. As a result, the Raman spectrum of R6G is obtained from the fused biconical taper zone surface coating with the silver sols in our experiments. The detected concentration is up to 10-7mol/L.展开更多
Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate selt-assembled tllmS at different excitation wavelengths were fairly compared. Shape conversion from silver nanoprisms to nanodisks on sl...Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate selt-assembled tllmS at different excitation wavelengths were fairly compared. Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out. The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanopar- ticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped. In this model, the influence of the crystal planes of silver na- noplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.展开更多
The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM ...The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.展开更多
Normal Haman Spectra(NRS) of solid PMT (1-phenyl-5-mercaptotetrazole) and MBT (2-mercaptobenzothiazole) and their surface enhanced Raman spectra (SERS) adsorbed on the surface of the silver subcolloidal particles are ...Normal Haman Spectra(NRS) of solid PMT (1-phenyl-5-mercaptotetrazole) and MBT (2-mercaptobenzothiazole) and their surface enhanced Raman spectra (SERS) adsorbed on the surface of the silver subcolloidal particles are reported and compared. It is supposed that PMT adsorbed on silver with both N and S atoms whereas MBT may be adsorbed on silver through S atom.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 50073028, 29974036, 20174047).
文摘Surface enhanced Raman scattering (SERS) spectroscopy was first utilized to study the photo-orientation behaviour of the photoreactive groups on a novel photo-alignment film surface and elucidate the generation mechanism of pretilt angle. The novel photo-alignment film was prepared by spin-coating a solution of ladderlike polysiloxane (LPS) bearing dual photoreactive group on an ITO surface and by irradiation with linear-polarized ultraviolet (LPUV) light A Si—H terminal compound (M) containing an identical photosensitive part has been used to fabricate a model film for SERS investigation.
文摘The effect of solvent on surface enhanced Raman scattering [SERS) of colloidal silver has been studied. Experiments show that the intensity of SERS is related to the polarity and molecular constitution of the solvent. The influence of solvent is due to the change of the adsorption quantity and adsorption intensity.
基金Supported by the National Natural Science Foundation of China(Nos.21073072, 20903044)the Scientific and Technological Development Plan Project of Jilin Province, China(No.20090546)+1 种基金the Open Project of State Key Laboratory of Superhard Materials, Chinathe Basic Research Fund of Jilin University, China
文摘Raman spectrum is a powerful analytical tool for determining the chemical information of compounds. In this study, we obtained analytical results of chlorophenols(CPs) molecules including 4-chlorophenol(4-CP), 2,6-dich- lorophenol(2,6-DCP) and 2,4,6-trichlorophenol(2,4,6-TCP) on the surface of Ag dendrites by surface-enhanced Raman scattering(SERS) spectra. SEM images indicate that the SERS substrate of Ag dendrites is composed of a large number of polygonal nanocrystallites, which self-assembled into a 3D hierarchical structure. It was found that there were distinct differences for those three molecules from Raman and SERS spectra. This indicates that SERS could be a new tool of detection technique regarding trace amounts of CPs.
基金Supported by the National Natural Science Foundation of China(Nos.20873050,20921003,20973074,20903044)the "111" Project(No.B06009)the Key Projects in the National Science & Technology Pillar Program,China(No.2007BAI38B03)
文摘We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monitor the reaction process of the formation of Ag on the surfaces of silica beads,and the optical resonance of the substrate could shift from visible to NIR region.It has been found that surface-enhanced Raman scattering(SERS) enhancement changes with the electroless plating time and the SSCS substrate with the plating time of 90 s(90SSCS) shows the strongest SERS response under the laser excitation at 514.5 nm.Signals collected over multiple spots and substrate of rhodamine 6G(R6G) resulted in a relative standard deviation(RSD) of 9.75%.The calculated enhancement factor(EF) was approximately 105 "106.SSCS substrate exhibits high SERS performance,which is due to electromagnetic SERS enhancement with additional localization field within closely packed Ag nanoparticles decorated on the SiO2 nanoparticles.And this substrate presents tunable and broad localized surface plasmon resonance(LSPR),so this method may open a new way for SERS studies with other laser excitation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11474364,51202300,51290271)the National Key Basic Research Program of China(Grant Nos.2013CB933601,2013YQ12034506)+3 种基金the Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No.2014A030306017)the Guangdong Special Support Program,the Doctoral Fund of Ministry of Education of China(Grant No.20120171120012)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13042)the Fundamental Research Funds for the Central Universities
文摘For the first time, Mo nanoscrew was cultivated as a novel non-coinage-metal substrate for surface-enhanced Raman scattering(SERS). It was found that the nanoscrew is composed of many small screw threads stacking along its length direction with small separations. Under external light excitation, strong electromagnetic coupling was initiated within the gaps, and many hot-spots formed on the surface of the nanoscrew, which was confirmed by high-resolution scanning near-field optical microscope measurements and numerical simulations using finite element method. These hotspots are responsible for the observed SERS activity of the nanoscrews. Raman mapping characterizations further revealed the excellent reproducibility of the SERS activity. Our findings may pave the way for design of low-cost and stable SERS substrates.
基金National Natural Sci ence Foundation of China(No.41476081)the Major Research and Development Project in Shandong Province(No.2019GHY112027)the Shandong Provincial Natural Science Foundation(No.ZR2020MF121).
文摘To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this study,three kinds of calibration algorithms were used to quantitative analysis of the mixture of naphthalene(Nap),phenanthrene(Phe),and pyrene(Pyr).Firstly,partial least squares(PLS)algorithm was used to select characteristic variables,then the global search capability of genetic algorithm(GA)was used for the determining of the initial weights and thresholds of back propagation(BP)neural network so that local minima was avoided.The PLS-GA-BP model exhibited superiority to quantify PAHs mixture,which achieved R2=0.9975,0.9710,0.9643,ARE=10.07%,19.28%,16.72%and RMSE=13.10,5.40,5.10 nmol L−1 for Nap,Phe,Pyr(in the PAHs mixture)concentration prediction respectively.The forecast error,ARE and RMSE have been reduced more than 50%and 60%respectively compared with the whole spectral BP model.The study indicates that accurate quantitative spectroscopic analysis of the mixture of PAHs samples can be achieved through the combination of SERS technique and PLS-GA-BP algorithm.
文摘In this paper,we report the study of surface-enhanced Raman Scattering of C_(60)films on roughed Ag,Cu and glass surface.The experiment results indicate that the C_(60)films on Ag substrate possess large enhance effect.An explanation of the enhancement with roughed glass surface is proposed based on waveguide Raman Scattering.
基金Project supported by the Fund from the Science and Technology Department of Jilin Province,China(Grant No.20170520108JH)the Beihua University Youth Nurtural Fund,China(Grant No.2017QNJJL15)+1 种基金the Beihua University PhD Research Start-up Fund,China(Grant No.202116140)the Undergraduate Innovation Project,China(Grant No.220718100)
文摘We describe the synthesis of three-dimensional(3D) multilayer ZnO@Ag/SiO2@Ag nanorod arrays by the physico–chemical method. The surface-enhanced Raman scattering(SERS) performance of the 3D multilayer Zn O@Ag/SiO2@Ag nanorod arrays is studied by varying the thickness of dielectric layer SiO2 and outer-layer noble Ag. The 3D Zn O@Ag/SiO2@Ag nanorod arrays create a huge number of SERS "hot spots" that mainly contribute to the high SERS sensitivity. The great enhancement of SERS results from the electron transfer between ZnO and Ag and different electromagnetic enhancements of Ag nanoparticles(NPs) with different thicknesses. Through the finite-difference time-domain(FDTD) theoretical simulation, the enhancement of SERS signal can be ascribed to a strong electric field enhancement produced in the 3D framework. The simplicity and generality of our method offer great advantages for further understanding the SERS mechanism induced by the surface plasmon resonance(SPR) effect.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61027015, 60677031, 60937003)the Shanghai Leading Academic Discipline Project (Grant No.30108)the Science and Technology Commission of Shanghai Municipality (Grant No.10DZ2210900)
文摘In this paper, a novel surface-enhanced Raman scattering (SERS) sensor combined with fused biconical taper fiber (FBTF) and film coated with silver sols is proposed. This structure is designed to significantly increase the SERS active surface when the length of the taper is increased and the radius is reduced, since the penetration depth is inversely proportional to the taper radius and proportional to the taper length according to the fiber-optic evanescent-wave theory. Based on the SERS sensing principle, the feasibility of FBTF sensor is analyzed in this paper. As a result, the Raman spectrum of R6G is obtained from the fused biconical taper zone surface coating with the silver sols in our experiments. The detected concentration is up to 10-7mol/L.
基金Supported by the National Natural Science Foundation of China(Nos.91027010,21073073,20903043,20973075,20773045)the Research Fund for the Doctoral Program of Higher Education of China(No.20090061120089)the Open Project of State Key Laboratory for Supramolecular Structure and Materials of China(No.201125)
文摘Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate selt-assembled tllmS at different excitation wavelengths were fairly compared. Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out. The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanopar- ticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped. In this model, the influence of the crystal planes of silver na- noplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.
基金National Natural Science Foundation of China(No.51373030)Chinese Universities Scientific Fund(No.CUSF-DH-D-2014023)
文摘The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.
文摘Normal Haman Spectra(NRS) of solid PMT (1-phenyl-5-mercaptotetrazole) and MBT (2-mercaptobenzothiazole) and their surface enhanced Raman spectra (SERS) adsorbed on the surface of the silver subcolloidal particles are reported and compared. It is supposed that PMT adsorbed on silver with both N and S atoms whereas MBT may be adsorbed on silver through S atom.