Objective The clinical signilicance of exPression of multidrug resistance- associated protein (MRP) in gastric and renal carcinoma was investigated. Methods LSAB immunohistochemistry was performed to detect eopression...Objective The clinical signilicance of exPression of multidrug resistance- associated protein (MRP) in gastric and renal carcinoma was investigated. Methods LSAB immunohistochemistry was performed to detect eopression of MRP in the carcinoma tissues of 52 patients with gastric carcinoma and 20 cases with renal cell carcinoma. Results The positive expression rate of MRP was 38.5% (20/52) in gastric carcinoma tissues, and 60% (12/20) in renal carcinoma tissues. The expression of MRP both on cellular membrane and in cytoplasm was observed, but the expression in cytoplasm (thick granule) was more obvious. The positive expression rates of MRP in advanced gastric and renal carcinoma (Ⅲ orⅣ stage) were 60% (15/25) and 88.90% (8/9) reSPectively, which were higher than those in early lesion (Ⅰ or Ⅱ stage, 18.5% and 36.4% respectively). Furthermore, the patients with positive expression of MRP in gastric carcinoma tissues had shorter mean survival time and lower 5-year survival rate than that with negative eopression of MRP. Conclusion MRP plays an important role in the infiltration and metastasis of gastric and renal carcinoma and might contribute to the intrinsic drug - resistance in both carcinomas.展开更多
Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present,...Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present, the role of T cells in neuronal regeneration in the brain is unknown. We injected amyloid-beta 1-42 peptide into the hippocampus of six BALB/c wild-type mice and six BALB/c-nude mice with T-cell immunodeficiency to establish an animal model of Alzhei- mer's disease. A further six mice of each genotype were injected with same volume of normal saline. Immunohistochemistry revealed that the number of regenerated neural progenitor cells in the hippocampus of BALB/c wild-type mice was significantly higher than that in BALB/c-nude mice. Quantitative fluorescence PCR assay showed that the expression levels of peripheral T cell-associated cytokines (interleukin-2, interferon-y) and hippocampal microglia-related cyto- kines (interleukin-113, tumor necrosis factor-a) correlated with the number of regenerated neural progenitor cells in the hippocampus. These results indicate that T cells promote hippocampal neurogenesis in Alzheimer's disease and T-cell immunodeficiency restricts neuronal regeneration in the hippocampus. The mechanism underlying the promotion of neuronal regeneration by T cells is mediated by an increased expression of peripheral T cells and central microglial cytokines in Alzheimer's disease mice. Our findings provide an experimental basis for understanding the role of T cells in Alzheimer's disease.展开更多
文摘Objective The clinical signilicance of exPression of multidrug resistance- associated protein (MRP) in gastric and renal carcinoma was investigated. Methods LSAB immunohistochemistry was performed to detect eopression of MRP in the carcinoma tissues of 52 patients with gastric carcinoma and 20 cases with renal cell carcinoma. Results The positive expression rate of MRP was 38.5% (20/52) in gastric carcinoma tissues, and 60% (12/20) in renal carcinoma tissues. The expression of MRP both on cellular membrane and in cytoplasm was observed, but the expression in cytoplasm (thick granule) was more obvious. The positive expression rates of MRP in advanced gastric and renal carcinoma (Ⅲ orⅣ stage) were 60% (15/25) and 88.90% (8/9) reSPectively, which were higher than those in early lesion (Ⅰ or Ⅱ stage, 18.5% and 36.4% respectively). Furthermore, the patients with positive expression of MRP in gastric carcinoma tissues had shorter mean survival time and lower 5-year survival rate than that with negative eopression of MRP. Conclusion MRP plays an important role in the infiltration and metastasis of gastric and renal carcinoma and might contribute to the intrinsic drug - resistance in both carcinomas.
基金supported by the National Natural Science Foundation of China,No.30840073the Medical Science Foundation of Guangdong Province,No.A2012298
文摘Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present, the role of T cells in neuronal regeneration in the brain is unknown. We injected amyloid-beta 1-42 peptide into the hippocampus of six BALB/c wild-type mice and six BALB/c-nude mice with T-cell immunodeficiency to establish an animal model of Alzhei- mer's disease. A further six mice of each genotype were injected with same volume of normal saline. Immunohistochemistry revealed that the number of regenerated neural progenitor cells in the hippocampus of BALB/c wild-type mice was significantly higher than that in BALB/c-nude mice. Quantitative fluorescence PCR assay showed that the expression levels of peripheral T cell-associated cytokines (interleukin-2, interferon-y) and hippocampal microglia-related cyto- kines (interleukin-113, tumor necrosis factor-a) correlated with the number of regenerated neural progenitor cells in the hippocampus. These results indicate that T cells promote hippocampal neurogenesis in Alzheimer's disease and T-cell immunodeficiency restricts neuronal regeneration in the hippocampus. The mechanism underlying the promotion of neuronal regeneration by T cells is mediated by an increased expression of peripheral T cells and central microglial cytokines in Alzheimer's disease mice. Our findings provide an experimental basis for understanding the role of T cells in Alzheimer's disease.