期刊文献+
共找到191篇文章
< 1 2 10 >
每页显示 20 50 100
Resilience to structural and molecular changes in excitatory synapses in the hippocampus contributes to cognitive function recovery in Tg2576 mice
1
作者 Carolina Aguado Sara Badesso +7 位作者 JoséMartínez-Hernández Alejandro Martín-Belmonte Rocío Alfaro-Ruiz Miriam Fernández Ana Esther Moreno-Martínez Mar Cuadrado-Tejedor Ana García-Osta Rafael Luján 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2068-2074,共7页
Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.... Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets.Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels,which may underlie healthy cognitive performance in aged AD animals.Utilizing the Morris Water Maze test,we selected resilient(asymptomatic)and cognitively impaired aged Tg2576 mice.While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups,western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction.To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice,we employed stereological and electron microscopic methods.Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls.Intriguingly,through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice,we uncovered differences in the subcellular localization of glutamate receptors.Specifically,the density of GluA1,GluA2/3,and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls.Notably,the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice.These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice. 展开更多
关键词 aging Alzheimer´s disease COGNITIVE HIPPOCAMPUS immunoelectron microscopy RESILIENCE synapse
下载PDF
Application of artificial synapse based on all-inorganic perovskite memristor in neuromorphic computing
2
作者 Fang Luo Wen-Min Zhong +3 位作者 Xin-Gui Tang Jia-Ying Chen Yan-Ping Jiang Qiu-Xiang Liu 《Nano Materials Science》 EI CAS CSCD 2024年第1期68-76,共9页
Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and g... Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system. 展开更多
关键词 MEMRISTOR CsPbBr_(3) Resistive switching Artificial synapse Neuromorphic computing
下载PDF
Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual‑Olfactory Crossmodal Perception
3
作者 Hailong Ma Huajing Fang +3 位作者 Xinxing Xie Yanming Liu He Tian Yang Chai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期38-52,共15页
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept... The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics. 展开更多
关键词 Violet phosphorus MXene Van der Waals heterojunctions Optoelectronic synapses Crossmodal perception
下载PDF
MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons
4
作者 Bhupender Sharma Melissa MTorres +2 位作者 Sheryl Rodriguez Laxman Gangwani Subodh Kumar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2698-2707,共10页
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis... Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia. 展开更多
关键词 Alzheimer's disease GABAergic synapse gamma-aminobutyric acid type A receptor subunitα-1(GABRα1) microRNA-502-3p(miR-502-3p) miRNA in situ hybridization PATCH-CLAMP
下载PDF
Microglia and astrocytes mediate synapse engulfment in a MER tyrosine kinase-dependent manner after traumatic brain injury
5
作者 Hui Shen Xiao-Jing Shi +6 位作者 Lin Qi Cheng Wang Muyassar Mamtilahun Zhi-Jun Zhang Won-Suk Chung Guo-Yuan Yang Yao-Hui Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1770-1776,共7页
Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models,but it is unclear whether the same mechanism is ... Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models,but it is unclear whether the same mechanism is also active in traumatic brain injury.In this study,we established a mouse model of traumatic brain injury and found that both microglia/macrophages and astrocytes phagocytosed synapses and expression of the MER proto-oncokinase increased 14 days after injury.Specific knockout of MER in microglia/macrophages or astrocytes markedly reduced injury volume and greatly improved neurobehavioral function.In addition,in both microglia/macrophages-specific and astrocytes-specific MER knock-out mice,the number of microglia/macrophage and astrocyte phagocytosing synapses was markedly decreased,and the total number of dendritic spines was increased.Our study suggested that MER proto-oncokinase expression in microglia/macrophages and astrocytes may play an important role in synaptic phagocytosis,and inhibiting this process could be a new strategy for treating traumatic brain injury. 展开更多
关键词 animal model astrocyte dendritic spines lysosome macrophage MER proto-oncokinase MICROGLIA neurologic function PHAGOCYTOSIS synapse engulfment traumatic brain injury
下载PDF
Two-Terminal Lithium-Mediated Artificial Synapses with Enhanced Weight Modulation for Feasible Hardware Neural Networks
6
作者 Ji Hyun Baek Kyung Ju Kwak +6 位作者 Seung Ju Kim Jaehyun Kim Jae Young Kim In Hyuk Im Sunyoung Lee Kisuk Kang Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期236-253,共18页
Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reli... Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of nondistributed weight updates owing to stable ion migrations.However,the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.Meanwhile,achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging.Here,two-terminal Au/LixCoO_(2)/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks.The Au/LixCoO_(2)/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO_(2)films.The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike,resulting in improved weight control functionality.Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity,symmetricity,and dynamic range.Notably,the LixCoO_(2)-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error.These impressive performances suggest the vertical two-terminal Au/LixCoO_(2)/Pt artificial synapses as promising candidates for hardware neural networks. 展开更多
关键词 Artificial synapse Neuromorphic Li-based Two-terminal Synaptic plasticity
下载PDF
Organic Optoelectronic Synapses for Sound Perception
7
作者 Yanan Wei Youxing Liu +7 位作者 Qijie Lin Tianhua Liu Song Wang Hao Chen Congqi Li Xiaobin Gu Xin Zhang Hui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期31-40,共10页
The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,or... The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels. 展开更多
关键词 Organic optoelectronic synapse Sound perception Recognition factor Impedance spectroscopy Interfacial layer
下载PDF
Amorphous gallium oxide homojunction-based optoelectronic synapse for multi-functional signal processing
8
作者 Rongliang Li Yonghui Lin +5 位作者 Yang Li Song Gao Wenjing Yue Hao Kan Chunwei Zhang Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2023年第7期60-68,共9页
In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously... In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously offering the bene-fits of low power consumption and high transmission rates are particularly valuable.Neuromorphic devices inspired by the human brain are considered to be one of the most promising successors to the efficient in-sensory process.In this paper,a homojunction-based multi-functional optoelectronic synapse(MFOS)is proposed and testified.It enables a series of basic electri-cal synaptic plasticity,including paired-pulse facilitation/depression(PPF/PPD)and long-term promotion/depression(LTP/LTD).In addition,the synaptic behaviors induced by electrical signals could be instead achieved through optical signals,where its sen-sitivity to optical frequency allows the MFOS to simulate high-pass filtering applications in situ and the perception capability integrated into memory endows it with the information acquisition and processing functions as a visual system.Meanwhile,the MFOS exhibits its performances of associative learning and logic gates following the illumination with two different wave-lengths.As a result,the proposed MFOS offers a solution for the realization of intelligent visual system and bionic electronic eye,and will provide more diverse application scenarios for future neuromorphic computing. 展开更多
关键词 optoelectronic synapse gallium oxide FILTER visual system associative learning logic gate
下载PDF
Paradoxical roles of inhibitory autapse and excitatory synapse in formation of counterintuitive anticipated synchronization
9
作者 丁学利 古华光 +1 位作者 李玉叶 贾雁兵 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期499-509,共11页
Different from the common delayed synchronization(DS)in which response appears after stimulation,anticipated synchronization(AS)in unidirectionally coupled neurons denotes a counterintuitive phenomenon in which respon... Different from the common delayed synchronization(DS)in which response appears after stimulation,anticipated synchronization(AS)in unidirectionally coupled neurons denotes a counterintuitive phenomenon in which response of the receiver neuron appears before stimulation of the sender neuron,showing an interesting function of brain to anticipate the future.The dynamical mechanism for the AS remains unclear due to complex dynamics of inhibitory and excitatory modulations.In this article,the paradoxical roles of excitatory synapse and inhibitory autapse in the formation of AS are acquired.Firstly,in addition to the common roles such that inhibitory modulation delays and excitatory modulation advances spike,paradoxical roles of excitatory stimulation to delay spike via type-II phase response and of inhibitory autapse to advance spike are obtained in suitable parameter regions,extending the dynamics and functions of the excitatory and inhibitory modulations.Secondly,AS is related to the paradoxical roles of the excitatory and inhibitory modulations,presenting deep understandings to the AS.Inhibitory autapse induces spike of the receiver neuron advanced to appear before that of the sender neuron at first,and then excitatory synapse plays a delay role to prevent the spike further advanced,resulting in the AS as the advance and delay effects realize a dynamic balance.Lastly,inhibitory autapse with strong advance,middle advance,and weak advance and delay effects induce phase drift(spike of the receiver neuron advances continuously),AS,and DS,respectively,presenting comprehensive relationships between AS and other behaviors.The results present potential measures to modulate AS related to brain function. 展开更多
关键词 anticipated synchronization inhibitory autapse excitatory synapse paradoxical firing
原文传递
Therapies for Tau-associated neurodegenerative disorders:targeting molecules,synapses,and cells
10
作者 Miranda Robbins 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2633-2637,共5页
Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have ... Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have shown success in late-stage clinical trials for Tau-associated neurodegenerative disorders. The most commonly prescribed treatments are symptomatic treatments such as cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers that were approved for use in Alzheimer's disease. As diagnostic screening can detect disorders at earlier time points, the field needs pre-symptomatic treatments that can prevent, or significantly delay the progression of these disorders(Koychev et al., 2019). These approaches may be different from late-stage treatments that may help to ameliorate symptoms and slow progression once symptoms have become more advanced should early diagnostic screening fail. This mini-review will highlight five key avenues of academic and industrial research for identifying therapeutic strategies to treat Tau-associated neurodegenerative disorders. These avenues include investigating(1) the broad class of chemicals termed “small molecules”;(2) adaptive immunity through both passive and active antibody treatments;(3) innate immunity with an emphasis on microglial modulation;(4) synaptic compartments with the view that Tau-associated neurodegenerative disorders are synaptopathies. Although this mini-review will focus on Alzheimer's disease due to its prevalence, it will also argue the need to target other tauopathies, as through understanding Alzheimer's disease as a Tau-associated neurodegenerative disorder, we may be able to generalize treatment options. For this reason, added detail linking back specifically to Tau protein as a direct therapeutic target will be added to each topic. 展开更多
关键词 Alzheimer's disease ANTIBODY frontotemporal dementia IMMUNOTHERAPY small molecules synapses TAU THERAPEUTICS
下载PDF
A Flexible Tribotronic Artificial Synapse with Bioinspired Neurosensory Behavior
11
作者 Jianhua Zeng Junqing Zhao +5 位作者 Tianzhao Bu Guoxu Liu Youchao Qi Han Zhou Sicheng Dong Chi Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期46-60,共15页
As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)wit... As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)with bioinspired neurosensory behavior is developed.The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor,which can tune the carriers transport through the migration/accumulation of ions.The TAS successfully demonstrates a series of synaptic behaviors by external stimuli,such as excitatory postsynaptic current,paired-pulse facilitation,and the hierarchical memory process from sensory memory to short-term memory and long-term memory.Moreover,the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm,and the TAS still exhibits excellent durability after 1000 bending cycles.Finally,Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell,respectively.This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems,which is great significance to the practical application of artificial limbs,robotics,and bionics in future. 展开更多
关键词 Flexible electronics Tribotronics Artificial synapses Contact electrification Neurosensory behavior
下载PDF
Lamotrigine protects against cognitive deficits,synapse and nerve cell damage,and hallmark neuropathologies in a mouse model of Alzheimer’s disease
12
作者 Xin-Xin Fu Rui Duan +7 位作者 Si-Yu Wang Qiao-Quan Zhang Bin Wei Ting Huang Peng-Yu Gong Yan E Teng Jiang Ying-Dong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期189-193,共5页
Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular me... Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular mechanisms remain unclear.In this study,amyloid precursor protein/presenilin 1(APP/PS1)double transgenic mice were used as a model of Alzheimer’s disease.Five-month-old APP/PS1 mice were intragastrically administered 30 mg/kg LTG or vehicle once per day for 3 successive months.The cognitive functions of animals were assessed using Morris water maze.Hyperphosphorylated tau and markers of synapse and glial cells were detected by western blot assay.The cell damage in the brain was investigated using hematoxylin and eosin staining.The levels of amyloid-βand the concentrations of interleukin-1β,interleukin-6 and tumor necrosis factor-αin the brain were measured using enzyme-linked immunosorbent assay.Differentially expressed genes in the brain after LTG treatment were analyzed by high-throughput RNA sequencing and real-time polymerase chain reaction.We found that LTG substantially improved spatial cognitive deficits of APP/PS1 mice;alleviated damage to synapses and nerve cells in the brain;and reduced amyloid-βlevels,tau protein hyperphosphorylation,and inflammatory responses.High-throughput RNA sequencing revealed that the beneficial effects of LTG on Alzheimer’s disease-related neuropathologies may have been mediated by the regulation of Ptgds,Cd74,Map3k1,Fosb,and Spp1 expression in the brain.These findings revealed potential molecular mechanisms by which LTG treatment improved Alzheimer’s disease.Furthermore,these data indicate that LTG may be a promising therapeutic drug for Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease Alzheimer’s disease-related neuropathologies amyloid-βpathology APP/PS1 mice cognitive deficits damage of synapses and nerve cells high-throughput RNA sequencing LAMOTRIGINE neuroinflammation tau protein hyperphosphorylation
下载PDF
低氧环境下听觉习服中GABAergic synapse的调控研究
13
作者 周灵羽 付振琳 +2 位作者 仁增卓嘎 扎西措姆 龚嘎蓝孜 《高原科学研究》 CSCD 2021年第4期84-91,共8页
目的:探索GABAergic synapse是否参与低氧环境下听觉习服的调控。方法:将8周龄Wistar大鼠随机分为移居高原30天组、移居高原60天组,提取两组大鼠耳蜗组织RNA,用全转录测序法筛选两组间大鼠耳蜗RNA的差异表达基因进行KEGG、GO富集分析。... 目的:探索GABAergic synapse是否参与低氧环境下听觉习服的调控。方法:将8周龄Wistar大鼠随机分为移居高原30天组、移居高原60天组,提取两组大鼠耳蜗组织RNA,用全转录测序法筛选两组间大鼠耳蜗RNA的差异表达基因进行KEGG、GO富集分析。结果:转录组测序筛选差异表达基因结果显示,移居高原60天组与移居高原30天组的耳蜗组织mRNA比较,共筛选到上调基因166个(P<0.05,FC>2),下调基因83个(P<0.05,FC>2),其中GABAergic synapse通路的上调基因为:Gabra1、Gabra2、Gabra3,下调基因为Cacna1s;KEGG分析发现,γ氨基丁酸能突触(GABAergic synapse)通路在听觉习服中作用显著(P<0.05);GO分析结果显示:γ氨基丁酸A受体复合物(GABA-A receptor complex)(P<0.01)、γ氨基丁酸氯离子门控通道活性(GABA-gated chloride ion channel activity)(P<0.01)等功能被富集。结论:GABAergic synapse信号传导途径参与了低氧环境下听觉习服的过程。 展开更多
关键词 低氧 听觉习服 GABAergic synapse
下载PDF
Voltage-dependent plasticity and image Boolean operations realized in a WOx-based memristive synapse 被引量:1
14
作者 Jiajuan Shi Ya Lin +4 位作者 Tao Zeng Zhongqiang Wang Xiaoning Zhao Haiyang Xu Yichun Liu 《Journal of Semiconductors》 EI CAS CSCD 2021年第1期128-133,共6页
The development of electronic devices that possess the functionality of biological synapses is a crucial step towards neuromorphic computing.In this work,we present a WOx-based memristive device that can emulate volta... The development of electronic devices that possess the functionality of biological synapses is a crucial step towards neuromorphic computing.In this work,we present a WOx-based memristive device that can emulate voltage-dependent synaptic plasticity.By adjusting the amplitude of the applied voltage,we were able to reproduce short-term plasticity(STP)and the transition from STP to long-term potentiation.The stimulation with high intensity induced long-term enhancement of conductance without any decay process,thus representing a permanent memory behavior.Moreover,the image Boolean operations(including intersection,subtraction,and union)were also demonstrated in the memristive synapse array based on the above voltage-dependent plasticity.The experimental achievements of this study provide a new insight into the successful mimicry of essential characteristics of synaptic behaviors. 展开更多
关键词 MEMRISTOR artificial synapse short-term plasticity long-term potentiation image Boolean operations
下载PDF
An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing 被引量:1
15
作者 胡庆 董博义 +5 位作者 王伦 黄恩铭 童浩 何毓辉 徐明 缪向水 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期49-54,共6页
Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike contin... Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition. 展开更多
关键词 superlattice-like phase-change material artificial synapse low-power consumption
原文传递
Artificial neuron and synapse in spintronics devices
16
作者 Dahai Wei 《Journal of Semiconductors》 EI CAS CSCD 2019年第5期6-6,共1页
Neuromorphic computing is the development of computingschemes inspired by the processing of information in thebrain, which can execute complex tasks very efficiently usingan architecture that is completely different f... Neuromorphic computing is the development of computingschemes inspired by the processing of information in thebrain, which can execute complex tasks very efficiently usingan architecture that is completely different from that of semiconductorchips. Recently, researchers from Tohoku Universityhave realized an artificial neuron and synapse in spintronicsdevices, which are promising for future energy-efficientand adoptive computing systems, as they behave likethe spiking neural network in human brains. 展开更多
关键词 Artificial NEURON and synapse in SPINTRONICS DEVICES
下载PDF
The functional properties of synapses made by regenerated axons across spinal cord lesion sites in lamprey
17
作者 David Parker 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第10期2272-2277,共6页
While the anatomical properties of regenerated axons across spinal cord lesion sites have been studied extensively,little is known of how the functional properties of regenerated synapses compared to those in unlesion... While the anatomical properties of regenerated axons across spinal cord lesion sites have been studied extensively,little is known of how the functional properties of regenerated synapses compared to those in unlesioned animals.This study aims to compare the properties of synapses made by regenerated axons with unlesioned axons using the lamprey,a model system for spinal injury research,in which functional locomotor recovery after spinal cord lesions is associated with axonal regeneration across the lesion site.Regenerated synapses below the lesion site did not differ from synapses from unlesioned axons with respect to the amplitude and duration of single excitatory postsynaptic potentials.They also showed the same activity-dependent depression over spike trains.However,regenerated synapses did differ from unlesioned synapses as the estimated number of synaptic vesicles was greater and there was evidence for increased postsynaptic quantal amplitude.For axons above the lesion site,the amplitude and duration of single synaptic inputs also did not differ significantly from unlesioned animals.However,in this case,there was evidence of a reduction in release probability and inputs facilitated rather than depressed over spike trains.Synaptic inputs from single regenerated axons below the lesion site thus do not increase in amplitude to compensate for the reduced number of descending axons after functional recovery.However,the postsynaptic input was maintained at the unlesioned level using different synaptic properties.Conversely,the facilitation from the same initial amplitude above the lesion site made the synaptic input over spike trains functionally stronger.This may help to increase propriospinal activity across the lesion site to compensate for the lesion-induced reduction in supraspinal inputs.The animal experiments were approved by the Animal Ethics Committee of Cambridge University. 展开更多
关键词 ELECTROPHYSIOLOGY LAMPREY plasticity regeneration reticulospinal axon spinal cord spinal injury synapse
下载PDF
Distinct effect of potassium 2-(l-hydroxypentyl) - benzoate on hippocampal neurons, synapses and dystrophic axons in APP/PS1 mice
18
作者 HUANG Long-jian ZHANG Yong +2 位作者 LAN Jia-qi WANG Xiao-liang PENG Ying 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第9期691-692,共2页
OBJECTIVE To study the protective effect of potassium 2-(l-hydroxypentyl)-benzoate(PHPB) on hippocampal neurons,synapses and dystrophic axons in APP/PS1 mice.METHODS Ten-month-old male APP/PS1 transgenic mice and age-... OBJECTIVE To study the protective effect of potassium 2-(l-hydroxypentyl)-benzoate(PHPB) on hippocampal neurons,synapses and dystrophic axons in APP/PS1 mice.METHODS Ten-month-old male APP/PS1 transgenic mice and age-matched wild-type mice were randomly divided into three groups:wild-type group(WT Con group,n=10),APP/PS1 group(Tg Con group,n=10) and PHPB treated APP/PS1 group(PHPB group,n=10).PHPB group received 30 mg · kg-1 PHPB by oral gavage once daily for 3 months.WT Con group and Tg Con group received the same volume of water.Three months later,mice were sacrificed for biochemical and pathological testing such as transmission electron microscopy,Golgi staining and Western boltting analysis.RESULTS Under the transmission electron microscope,most hippocampal neurons and subcel ular organel es in WT Con group exhibited normal morphology.However,the degenerative changes were observed in Tg Con group such as nuclear fragmentation,mitochondrial swelling,ribosomes detachment and autophagic vacuoles accumulation.The hippocampal synapses number and the thickness of postsynaptic density(PSD) were significantly decreased in Tg Con group compared with the WT Con group(P<0.05).After PHPB treatment,the degenerative changes in APP/PS1 mice were alleviated to some extent.The synapse number has been elevated significantly(P<0.05) and the PSD has been thickened as well.Golgi staining showed that the spine density of secondary and tertiary apical dendritic branches was significantly decreased in CA1 and DG areas of Tg Con group(P<0.05).Sholl analysis revealed a decrease of dendritic complexity in Tg Con group compared with WT Con group(P<0.05).These abnormalities were alleviated to some extent after PHPB treatment.Western blotting study showed that the protein levels of synaptic marker PSD-95 and synaptophysin were significantly decreased in the hippocampus of Tg Con group(P<0.05).A significant increase of PSD-95(P<0.05) and a slight increase of SYP were observed after the PHPB treatment.Besides,we found a significant increase in the ratio of LC3-Ⅱ/LC3-Ⅰ in Tg Con group compared with the WT Con group(P<0.01) and the relevant improvement after PHPB treatment(P<0.05),which showed the regulatory effect of PHPB on autophagy impairment.CONCLUSION PHPB showed protective effects on hippocampal neurons,synapses and dystrophic axons in APP/PS1 mice,which might help explain its role on cognitive improvement in Alzheimer disease treatment. 展开更多
关键词 POTASSIUM 2-(l-hydroxypentyl)-benzoate APP/PS1 MICE hippocampal synapse dysfunction dystrophic AXONS
下载PDF
Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
19
作者 王硕培 何聪丽 +3 位作者 汤建 杨蓉 时东霞 张广宇 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期183-188,共6页
Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for... Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for using in nonvolatile memory storage and neuromorphic computing. In this paper, we report the fabrication of vertical sandwiched memristor device using ultrathin quasi-two-dimensional gallium oxide produced by squeegee method. The as-fabricated two-terminal memristor device exhibited the essential functions of biological synapses, such as depression and potentiation of synaptic weight, transition from short time memory to long time memory, spike-timing-dependent plasticity, and spike-rate-dependent plasticity. The synaptic weight of the memristor could be tuned by the applied voltage pulse, number,width, and frequency. We believe that the injection of the top Ag cations should play a significant role for the memristor phenomenon. The ultrathin of medium layer represents an advance to integration in vertical direction for future applications and our results provide an alternative way to fabricate synaptic devices. 展开更多
关键词 gallium oxide MEMRISTOR artificial synapse synaptic plasticity
原文传递
Beyond vertebrates:the amphioxus as a relevant model system to explore the formation,organization,and regeneration of neuromuscular synapses
20
作者 Esperanza Martínez Sylvain Marcellini Juan Pablo Henríquez 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第11期2425-2426,共2页
The neuromuscular junction(NMJ)is the peripheral synapse controlling muscle contraction and coordinated movement in a wide variety of animals.In humans,the mature NMJ is the primary target of morphological disassembly... The neuromuscular junction(NMJ)is the peripheral synapse controlling muscle contraction and coordinated movement in a wide variety of animals.In humans,the mature NMJ is the primary target of morphological disassembly and functional decline in several physiological and pathological conditions,such as aging and motor diseases。 展开更多
关键词 system CONTRACTION synapse
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部