Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic...Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic brain injury by controlled cortical impact. Rat models were intragastrically administered 9 and 18 g/kg Xuefu Zhuyu decoction once a day for 14 or 21 days. Changes in neurological function were assessed by modified neurological severity scores and the Morris water maze. Immunohistochemistry, western blot assay, and re- verse-transcription polymerase chain reaction were used to analyze synapsin protein and mRNA expression at the injury site of rats. Our results showed that Xuefu Zhuyu decoction visibly improved neurological function of rats with traumatic brain injury. These changes were accompanied by increased expression of synaptophysin, synapsin I, and postsynaptic density protein-95 protein and mRNA in a dose-de- pendent manner. These findings indicate that Xuefu Zhuyu decoction increases synapsin expression and improves neurological deficits alder traumatic brain injury.展开更多
Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3 5 bone marrow mesenchymal stem cells were...Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3 5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxytase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury.展开更多
Synapsins are a family of phosphoproteins specifically associated with the cytoplasmic surface of the synaptic vesicle membrane, appearing to regulate neurotransmitter release, the formation and maintenance of synapti...Synapsins are a family of phosphoproteins specifically associated with the cytoplasmic surface of the synaptic vesicle membrane, appearing to regulate neurotransmitter release, the formation and maintenance of synaptic contacts. They could induce the change of the synaptic plasticity to regulate various adaptation reactions, and change the cognitive behaviors. So we presume that if some cognitive behavior are damaged, synapsins would be changed as well. This gives us a new recognition of better diagnosis and therapy of cognitive disorder desease.展开更多
Brain-derived neurotrophic factor (BDNF) promotes synaptic formation and functional maturation by upregulating synapsin expression in cortical and hippocampal neurons. However, it remains controversial whether BDNF ...Brain-derived neurotrophic factor (BDNF) promotes synaptic formation and functional maturation by upregulating synapsin expression in cortical and hippocampal neurons. However, it remains controversial whether BDNF affects synapsin expression in spinal cord anterior horn neurons. Wistar rat spinal cord anterior horn neurons were cultured in serum-supplemented medium containing BDNF, BDNF antibody, and Hank's solution for 3 days, and then synapsin I and synaptophysin protein and mRNA expression was detected. Under serum-supplemented conditions the number of surviving neurons in the spinal cord anterior horn was similar among BDNF, anti-BDNF, and control groups (P 〉 0.05). Synapsin I and synaptophysin protein and mRNA expressions were increased in BDNF-treated neurons, but decreased in BDNF antibody-treated neurons (P 〈 0.01). These results indicated that BDNF significantly promotes synapsin I and synaptophysin expression in in vitro-cultured rat spinal cord anterior horn neurons.展开更多
Synapsin Ⅱ is a member of the neuronal phosphoprotein family. These phosphoproteins are evolutionarily conserved across many organisms and are important in a variety of synaptic functions, including synaptogenesis an...Synapsin Ⅱ is a member of the neuronal phosphoprotein family. These phosphoproteins are evolutionarily conserved across many organisms and are important in a variety of synaptic functions, including synaptogenesis and the regulation of neurotransmitter release. A number of genome-wide scans, meta-analyses, and genetic susceptibility studies have implicated the synapsin II gene(3p25) in the etiology of schizophrenia(SZ) and other psychiatric disorders. Further studies have found a reduction of synapsin II m RNA and protein in the prefrontal cortex in post-mortem samples from schizophrenic patients. Disruptions in the expression of this gene may cause synaptic dysfunction, which can result in neurotransmitter imbalances, likely contributing to the pathogenesis of SZ. SZ is a costly, debilitating psychiatric illness affecting approximately 1.1% of the world's population, amounting to 51 million people today. The disorder is characterized by positive(hallucinations, paranoia), negative(social withdrawal, lack of motivation), and cognitive(memory impairments, attention deficits) symptoms. This review provides a comprehensive summary of the structure, function, and involvement of the synapsin family, specifically synapsin II, in the pathophysiology of SZ and possible target for therapeutic intervention/implications.展开更多
This study investigated effects of post-training treatment with phaclofen, GABAB receptor antagonist, on the memory of food location and on the expression of Synapsin I in the hippocampus of pigeons. Pigeons were trai...This study investigated effects of post-training treatment with phaclofen, GABAB receptor antagonist, on the memory of food location and on the expression of Synapsin I in the hippocampus of pigeons. Pigeons were trained in food location (7 sessions) and underwent post-training treatment with phaclofen (0.3 mg/kg, i.p.;PHAC), saline (SAL) or non-treated (NTR). Testing for memory persistence occurred 7 days after the last training session (PHACR, SALR and NTRR Groups). Pigeons treated with phaclofen had lower latency and higher correct choice values than saline and non-treated controls (p < 0.05). Analysis of hippocampus tissue indicated that Synapsin I-positive cell counts were higher in pigeons treated with phaclofen than in saline and non-treated controls (p < 0.05). Data indicated enhancement of consolidation and persistence of food location memory, and up-regulation of Synapsin I expression in the hippocampus of pigeons, which were related with post-training blockade of GABAB receptors.展开更多
To define whether oxidative stress and aging induce abnormal dissociation of neurotransmitter-enclosing synaptic vesicles in rat brain nerve terminals, we assessed the activation of Ca+/calmodulin dependent protein ki...To define whether oxidative stress and aging induce abnormal dissociation of neurotransmitter-enclosing synaptic vesicles in rat brain nerve terminals, we assessed the activation of Ca+/calmodulin dependent protein kinase II (CAM kinase II) and changes in the levels of synapsin I, which is a synaptic vesicle-associated protein involved in the modulation of neurotransmitter release. Assessment of young rats subjected to hyperoxia-induced oxidative stress and normal aged rats revealed that synaptic CAM kinase II in the rat brain was markedly activated through oxidative stress and aging. In accordance with the activation of CAM kinase II, the levels of phosphorylated synapsin I increased significantly in nerve terminals. Furthermore, it was found that vitamin E prevents these oxidative stress-induced abnormal processes in rat nerve terminals. These results suggest that oxidative stress and aging facilitate the mobilization of neurotransmitter-enclosing synaptic vesicles from the reserve pool in the nerve terminal, thereby inducing abnormal accumulation of synaptic vesicles in the synapse, and that vitamin E inhibits this process in the brain through its antioxidative action.展开更多
Objective: The aim of this study was to research the relationship between Attention Deficit Hyperactivity Disorder (ADHD) and the synapsin III -196G>A and -631C>G polymorphisms and study their impact on neurocog...Objective: The aim of this study was to research the relationship between Attention Deficit Hyperactivity Disorder (ADHD) and the synapsin III -196G>A and -631C>G polymorphisms and study their impact on neurocognition and behavior in Turkish children and adolescents. Methods: A total of 201 ADHD-diagnosed children and 100 control subjects aged between 8 and 15 years were recruited, and genetic material was obtained from saliva. In the diagnostic assessments, the KSADS- PL semi-structured interview was applied. Children with any comorbid psychiatric diagnosis (with the exclusion of oppositional defiant disorder (ODD)), medical conditions, prior psychotropic drug use history or IQ score below 80 were excluded. For the behavioral and ADHD symptom assessments, the Turgay DSM-IV Disruptive Behaviors Rating Scale, Teacher Report Form (TRF) and Child Behavior Checklist (CBCL) were completed by the parents and teachers. Neurocognitive profiles were evaluated with the CNS-Vital Signs computerized neurocognitive test battery. Results: No significant difference in ADHD prevalence was observed between subjects with the synapsin III gene -196G>A polymorphism and -631C>G polymorphisms. These polymorphisms were also not associated with subtypes of ADHD. We found a relationship between both polymorphisms and Stroop simple reaction time. Conclusion: Synapsin’s effect could be limited during childhood, but synapsin polymorphisms could be associated with Stroop simple reaction time.展开更多
基金supported by the National Natural Science Foundation of China,No.81673719,81173175 and 81303074a grant from China Postdoctoral Science Foundation,No.2016M600639 and 2017T100614
文摘Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic brain injury by controlled cortical impact. Rat models were intragastrically administered 9 and 18 g/kg Xuefu Zhuyu decoction once a day for 14 or 21 days. Changes in neurological function were assessed by modified neurological severity scores and the Morris water maze. Immunohistochemistry, western blot assay, and re- verse-transcription polymerase chain reaction were used to analyze synapsin protein and mRNA expression at the injury site of rats. Our results showed that Xuefu Zhuyu decoction visibly improved neurological function of rats with traumatic brain injury. These changes were accompanied by increased expression of synaptophysin, synapsin I, and postsynaptic density protein-95 protein and mRNA in a dose-de- pendent manner. These findings indicate that Xuefu Zhuyu decoction increases synapsin expression and improves neurological deficits alder traumatic brain injury.
基金supported by the Doctoral Fund of Ministry of Education of China,No.20060392003Academic Development Foundation of Fujian Medical University, No.JS08004
文摘Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3 5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxytase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury.
文摘Synapsins are a family of phosphoproteins specifically associated with the cytoplasmic surface of the synaptic vesicle membrane, appearing to regulate neurotransmitter release, the formation and maintenance of synaptic contacts. They could induce the change of the synaptic plasticity to regulate various adaptation reactions, and change the cognitive behaviors. So we presume that if some cognitive behavior are damaged, synapsins would be changed as well. This gives us a new recognition of better diagnosis and therapy of cognitive disorder desease.
文摘Brain-derived neurotrophic factor (BDNF) promotes synaptic formation and functional maturation by upregulating synapsin expression in cortical and hippocampal neurons. However, it remains controversial whether BDNF affects synapsin expression in spinal cord anterior horn neurons. Wistar rat spinal cord anterior horn neurons were cultured in serum-supplemented medium containing BDNF, BDNF antibody, and Hank's solution for 3 days, and then synapsin I and synaptophysin protein and mRNA expression was detected. Under serum-supplemented conditions the number of surviving neurons in the spinal cord anterior horn was similar among BDNF, anti-BDNF, and control groups (P 〉 0.05). Synapsin I and synaptophysin protein and mRNA expressions were increased in BDNF-treated neurons, but decreased in BDNF antibody-treated neurons (P 〈 0.01). These results indicated that BDNF significantly promotes synapsin I and synaptophysin expression in in vitro-cultured rat spinal cord anterior horn neurons.
基金Supported by The Canadian Institute of Health Research(CIHR)
文摘Synapsin Ⅱ is a member of the neuronal phosphoprotein family. These phosphoproteins are evolutionarily conserved across many organisms and are important in a variety of synaptic functions, including synaptogenesis and the regulation of neurotransmitter release. A number of genome-wide scans, meta-analyses, and genetic susceptibility studies have implicated the synapsin II gene(3p25) in the etiology of schizophrenia(SZ) and other psychiatric disorders. Further studies have found a reduction of synapsin II m RNA and protein in the prefrontal cortex in post-mortem samples from schizophrenic patients. Disruptions in the expression of this gene may cause synaptic dysfunction, which can result in neurotransmitter imbalances, likely contributing to the pathogenesis of SZ. SZ is a costly, debilitating psychiatric illness affecting approximately 1.1% of the world's population, amounting to 51 million people today. The disorder is characterized by positive(hallucinations, paranoia), negative(social withdrawal, lack of motivation), and cognitive(memory impairments, attention deficits) symptoms. This review provides a comprehensive summary of the structure, function, and involvement of the synapsin family, specifically synapsin II, in the pathophysiology of SZ and possible target for therapeutic intervention/implications.
文摘This study investigated effects of post-training treatment with phaclofen, GABAB receptor antagonist, on the memory of food location and on the expression of Synapsin I in the hippocampus of pigeons. Pigeons were trained in food location (7 sessions) and underwent post-training treatment with phaclofen (0.3 mg/kg, i.p.;PHAC), saline (SAL) or non-treated (NTR). Testing for memory persistence occurred 7 days after the last training session (PHACR, SALR and NTRR Groups). Pigeons treated with phaclofen had lower latency and higher correct choice values than saline and non-treated controls (p < 0.05). Analysis of hippocampus tissue indicated that Synapsin I-positive cell counts were higher in pigeons treated with phaclofen than in saline and non-treated controls (p < 0.05). Data indicated enhancement of consolidation and persistence of food location memory, and up-regulation of Synapsin I expression in the hippocampus of pigeons, which were related with post-training blockade of GABAB receptors.
文摘To define whether oxidative stress and aging induce abnormal dissociation of neurotransmitter-enclosing synaptic vesicles in rat brain nerve terminals, we assessed the activation of Ca+/calmodulin dependent protein kinase II (CAM kinase II) and changes in the levels of synapsin I, which is a synaptic vesicle-associated protein involved in the modulation of neurotransmitter release. Assessment of young rats subjected to hyperoxia-induced oxidative stress and normal aged rats revealed that synaptic CAM kinase II in the rat brain was markedly activated through oxidative stress and aging. In accordance with the activation of CAM kinase II, the levels of phosphorylated synapsin I increased significantly in nerve terminals. Furthermore, it was found that vitamin E prevents these oxidative stress-induced abnormal processes in rat nerve terminals. These results suggest that oxidative stress and aging facilitate the mobilization of neurotransmitter-enclosing synaptic vesicles from the reserve pool in the nerve terminal, thereby inducing abnormal accumulation of synaptic vesicles in the synapse, and that vitamin E inhibits this process in the brain through its antioxidative action.
文摘Objective: The aim of this study was to research the relationship between Attention Deficit Hyperactivity Disorder (ADHD) and the synapsin III -196G>A and -631C>G polymorphisms and study their impact on neurocognition and behavior in Turkish children and adolescents. Methods: A total of 201 ADHD-diagnosed children and 100 control subjects aged between 8 and 15 years were recruited, and genetic material was obtained from saliva. In the diagnostic assessments, the KSADS- PL semi-structured interview was applied. Children with any comorbid psychiatric diagnosis (with the exclusion of oppositional defiant disorder (ODD)), medical conditions, prior psychotropic drug use history or IQ score below 80 were excluded. For the behavioral and ADHD symptom assessments, the Turgay DSM-IV Disruptive Behaviors Rating Scale, Teacher Report Form (TRF) and Child Behavior Checklist (CBCL) were completed by the parents and teachers. Neurocognitive profiles were evaluated with the CNS-Vital Signs computerized neurocognitive test battery. Results: No significant difference in ADHD prevalence was observed between subjects with the synapsin III gene -196G>A polymorphism and -631C>G polymorphisms. These polymorphisms were also not associated with subtypes of ADHD. We found a relationship between both polymorphisms and Stroop simple reaction time. Conclusion: Synapsin’s effect could be limited during childhood, but synapsin polymorphisms could be associated with Stroop simple reaction time.