An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of d...An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.展开更多
Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel me...Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel mechanism was designed.A“beak-shaped”trajectory was designed for integrated transplanting requirements,and meantime,either the posture requirements of transplanting claw were determined.Based on the transplanting trajectory of the mechanism,a corresponding mathematical model for solving the link parameters was established,and then the five-bar mechanism was divided into two bar groups,optimization was conducted in two steps based on genetic algorithm and NSGA-II algorithm.Consequently,the optimal solution of the hybrid-driven five-bar parallel mechanism for flower seedling transplanting was obtained.Compared with similar designs,the trajectory displacement of the proposed mechanism is larger in the condition of smaller link size,which indicates that the mechanism can effectively decrease the machine size.The real-time controllable motor angular acceleration fluctuation is smaller and the commutation times are less,which has the advantage of reducing the difficulty of the mechanism control system.Subsequently,the correctness of the design method is verified by kinematics simulation.Finally,the synchronous linkage motion control methods of the two motors were designed,a transplanting experiment of the prototype was carried out,the picking success rate had reached 90%-93.4%and transplanting success rate was 80.5%-86.9%during experiment,which showed that the integrated operation of picking and planting flower seedlings can be realized by the proposed mechanism.展开更多
基金supported by the Key Project of Science and Technology Research of Ministry of Educationof China (No. 108037)the National Natural Science Foundation of China (No. 10402008 and50535010)
文摘An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.
基金The research work was financially supported by the National Natural Science Foundation of China(Grant No.51775512,51975536)Key research projects of Zhejiang Province(Grant No.2018C02046)+2 种基金Project funded by China Postdoctoral Science FoundationBasic public welfare research projects of Zhejiang Province(Grant No.LGN19E050002,LGN20E050006)Basic Scientific Research Foundation of Zhejiang Sci-Tech University.
文摘Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel mechanism was designed.A“beak-shaped”trajectory was designed for integrated transplanting requirements,and meantime,either the posture requirements of transplanting claw were determined.Based on the transplanting trajectory of the mechanism,a corresponding mathematical model for solving the link parameters was established,and then the five-bar mechanism was divided into two bar groups,optimization was conducted in two steps based on genetic algorithm and NSGA-II algorithm.Consequently,the optimal solution of the hybrid-driven five-bar parallel mechanism for flower seedling transplanting was obtained.Compared with similar designs,the trajectory displacement of the proposed mechanism is larger in the condition of smaller link size,which indicates that the mechanism can effectively decrease the machine size.The real-time controllable motor angular acceleration fluctuation is smaller and the commutation times are less,which has the advantage of reducing the difficulty of the mechanism control system.Subsequently,the correctness of the design method is verified by kinematics simulation.Finally,the synchronous linkage motion control methods of the two motors were designed,a transplanting experiment of the prototype was carried out,the picking success rate had reached 90%-93.4%and transplanting success rate was 80.5%-86.9%during experiment,which showed that the integrated operation of picking and planting flower seedlings can be realized by the proposed mechanism.