期刊文献+
共找到714篇文章
< 1 2 36 >
每页显示 20 50 100
Synergistic effects of the entomopathogenic fungus Isaria javanica and low doses of dinotefuran on the efficient control of the rice pest Sogatella furcifera
1
作者 Tingting Zhou Qian Zhao +4 位作者 Chengzhou Li Lu Ye Yanfang Li Nemat OKeyhani Zhen Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期621-638,共18页
The rice planthopper,Sogatella furcifera,is a piercing-sucking insect pest of rice,Oryza sativa.It is responsible for significant crop yield losses,and has developed moderate to high resistance to several commonly use... The rice planthopper,Sogatella furcifera,is a piercing-sucking insect pest of rice,Oryza sativa.It is responsible for significant crop yield losses,and has developed moderate to high resistance to several commonly used chemical insecticides.We investigated the effects of the insect fungal pathogen Isaria javanica,alone and in combination with the chemical insecticide dinotefuran,on S.furcifera under both laboratory and field conditions.Our results show that I.javanica displays high infection efficiency and mortality for different stages of S.furcifera,reducing adult survival,female oviposition and ovary development.Laboratory bioassays showed that the combined use of I.javanica with a low dose(4-16 mg L^(-1))of dinotefuran resulted in higher mortality in S.furcifera than the use of I.javanica or dinotefuran alone.The combined treatment also had more significant effects on several host enzymes,including superoxide dismutase,catalase,peroxidase,and prophenol oxidase activities.In field trials,I.javanica effectively suppressed populations of rice planthoppers to low levels(22-64%of the level in untreated plots).Additional field experiments showed synergistic effects,i.e.,enhanced efficiency,for the control of S.furcifera populations using the combination of a low dose of I.javanica(1×10^(4) conidia mL^(-1))and a low dose of dinotefuran(~4.8-19.2%of normal field use levels),with control effects of>90%and a population level under 50 insects per 100 hills at 3-14 days post-treatment.Our findings indicate that the entomogenous fungus I.javanica offers an attractive biological control addition as part of the integrated pest management(IPM)practices for the control of rice plant pests. 展开更多
关键词 Isaria javanica Sogatella furcifera entomopathogenic fungus white planthopper RICE synergistic effect on pest control
下载PDF
Synergistic Swarm Optimization Algorithm
2
作者 Sharaf Alzoubi Laith Abualigah +3 位作者 Mohamed Sharaf Mohammad Sh.Daoud Nima Khodadadi Heming Jia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2557-2604,共48页
This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optima... This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm. 展开更多
关键词 synergistic swarm optimization algorithm optimization algorithm METAHEURISTIC engineering problems benchmark functions
下载PDF
Zonal activation of molecular carbon dioxide and hydrogen over dual sites Ni-Co-MgO catalyst for CO_(2) methanation:Synergistic catalysis of Ni and Co species
3
作者 Zonglin Li Jianjun Chen +8 位作者 Yu Xie Junjie Wen Huiling Weng Mingxue Wang Jingyi Zhang Jinyan Cao Guocai Tian Qiulin Zhang Ping Ning 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期213-225,共13页
An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant s... An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance. 展开更多
关键词 Zonal activation CO_(2) methanation Dual active sites synergistic effect
下载PDF
Inhibitory effect of procyanidin B2 and tannin acid on cholesterol esterase and their synergistic effect with orlistat
4
作者 Xiangxin Li Yijing Pu +5 位作者 Haitao Jiang Wenxiao Jiao Wenjun Peng Wenli Tian Weibo Jiang Xiaoming Fang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期360-369,共10页
This study was aimed to analyze the effect of procyanidin B2(PC)and tannin acid(TA)on the activities of cholesterol esterase(CEase)and the inhibitory mechanisms of enzymatic activity.The interaction mechanisms were in... This study was aimed to analyze the effect of procyanidin B2(PC)and tannin acid(TA)on the activities of cholesterol esterase(CEase)and the inhibitory mechanisms of enzymatic activity.The interaction mechanisms were investigated by enzymatic kinetics,multi-spectroscopy methods,thermodynamics analysis,molecular docking,and dynamic simulations.PC and TA could bind with CEase and inhibit the activity of enzyme in a mixed-competitive manner and non-competitive manner,which was verified by molecular docking simulations and dynamics simulations.Also,PC and TA showed the synergistic inhibition with orlistat.Fluorescence,UVvis and the thermodynamic analysis revealed that the complexes were formed from CEase and inhibitors by noncovalent interaction.As revealed by the circular dichroism results,both PC and TA decreased enzymatic activities by altering the conformations of CEase.The inhibition of PC and TA on CEase might be one mechanism for its cholesterol-lowering effect. 展开更多
关键词 Cholesterol esterase POLYPHENOLS Interaction mechanisms Molecular dynamic simulation synergistic effect
下载PDF
Synergistic effects of three traditional herbs green tea,mulberry leaf and corn silk on glucose uptake level of L6 myoblasts and the hypoglycemic mechanism
5
作者 Jing-Na Zhou Ming-Yue Li +4 位作者 Ting-Ting Zhang Jing-Yang Lu Min Zhang Peng-Wei Zhuang Hai-Xia Chen 《Traditional Medicine Research》 2024年第7期1-12,共12页
Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear... Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects. 展开更多
关键词 green tea mulberry leaf corn silk synergistic effect type 2 diabetes mellitus mechanism
下载PDF
Synergistic“Anchor‑Capture”Enabled by Amino and Carboxyl for Constructing Robust Interface of Zn Anode 被引量:1
6
作者 Zhen Luo Yufan Xia +9 位作者 Shuang Chen Xingxing Wu Ran Zeng Xuan Zhang Hongge Pan Mi Yan Tingting Shi Kai Tao Ben Bin Xu Yinzhu Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期265-280,共16页
While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further devel... While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further development dramatically.Herein,we utilize the amino acid glycine(Gly)as an electrolyte additive to stabilize the Zn anode–electrolyte interface.The unique interfacial chemistry is facilitated by the synergistic“anchor-capture”effect of polar groups in Gly molecule,manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn^(2+)in the local region.As such,this robust anode–electrolyte interface inhibits the disordered migration of Zn^(2+),and effectively suppresses both side reactions and dendrite growth.The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22%at 1 mA cm^(−2)and 0.5 mAh cm^(−2)over 500 cycles.Even at a high Zn utilization rate(depth of discharge,DODZn)of 68%,a steady cycle life up to 200 h is obtained for ultrathin Zn foils(20μm).The superior rate capability and long-term cycle stability of Zn–MnO_(2)full cells further prove the effectiveness of Gly in stabilizing Zn anode.This work sheds light on additive designing from the specific roles of polar groups for AZIBs. 展开更多
关键词 Zn anode–electrolyte interface Polar groups synergistic“anchor-capture”effect Side reactions Dendrite growth
下载PDF
Synergistic Effect of Dual-Doped Carbon on MO_(2)C Nanocrystals Facilitates Alkaline Hydrogen Evolution 被引量:1
7
作者 Min Zhou Xiaoli Jiang +4 位作者 Weijie Kong Hangfei Li Fei Lu Xin Zhou Yagang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期101-111,共11页
Molybdenum carbide(MO_(2)C)materials are promising electrocatalysts with potential applications in hydrogen evolution reaction(HER)due to low cost and Pt-like electronic structures.Nevertheless,their HER activity is u... Molybdenum carbide(MO_(2)C)materials are promising electrocatalysts with potential applications in hydrogen evolution reaction(HER)due to low cost and Pt-like electronic structures.Nevertheless,their HER activity is usually hindered by the strong hydrogen binding energy.Moreover,the lack of water-cleaving site's makes it difficult for the catalysts to work in alkaline solutions.Here,we designed and synthesized a B and N dual-doped carbon layer that encapsulated on MO_(2)C nanocrystals(MO_(2)C@BNC)for accelerating HER under alkaline condition.The electronic interactions between the MO_(2)C nanocrystals and the multiple-doped carbon layer endow a near-zero H adsorption Gibbs free energy on the defective C atoms over the carbon shell.Meanwhile,the introduced B atoms afford optimal H_2O adsorption sites for the water-cleaving step.Accordingly,the dual-doped MO_(2)C catalyst with synergistic effect of non-metal sites delivers superior HER performances of a low overpotential(99 mV@10 mA cm^(-2))and a small Tafel slope(58.1 mV dec^(-1))in 1 M KOH solution.Furthermore,it presents a remarkable activity that outperforming the commercial 10%Pt/C catalyst at large current density,demonstrating its applicability in industrial water splitting.This study provides a reasonable design strategy towards noble-metal-free HER catalysts with high activity. 展开更多
关键词 Molybdenum carbide Hydrogen evolution reaction Dual-doped synergistic effect Superior performances
下载PDF
Engineering Multi‑field‑coupled Synergistic Ion Transport System Based on the Heterogeneous Nanofluidic Membrane for High‑Efficient Lithium Extraction 被引量:1
8
作者 Lin Fu Yuhao Hu +8 位作者 Xiangbin Lin Qingchen Wang Linsen Yang Weiwen Xin Shengyang Zhou Yongchao Qian Xiang‑Yu Kong Lei Jiang Liping Wen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期436-449,共14页
The global carbon neutrality strategy brings a wave of rechargeable lithium‐ion batteries technique development and induces an ever-growing consumption and demand for lithium(Li).Among all the Li exploitation,extract... The global carbon neutrality strategy brings a wave of rechargeable lithium‐ion batteries technique development and induces an ever-growing consumption and demand for lithium(Li).Among all the Li exploitation,extracting Li from spent LIBs would be a strategic and perspective approach,especially with the low energy consumption and eco-friendly membrane separation method.However,current membrane separation systems mainly focus on monotonous membrane design and structure optimization,and rarely further consider the coordination of inherent structure and applied external field,resulting in limited ion transport.Here,we propose a heterogeneous nanofluidic membrane as a platform for coupling multi-external fields(i.e.,lightinduced heat,electrical,and concentration gradient fields)to construct the multi-field-coupled synergistic ion transport system(MSITS)for Li-ion extraction from spent LIBs.The Li flux of the MSITS reaches 367.4 mmol m^(−2)h^(−1),even higher than the sum flux of those applied individual fields,reflecting synergistic enhancement for ion transport of the multi-field-coupled effect.Benefiting from the adaptation of membrane structure and multi-external fields,the proposed system exhibits ultrahigh selectivity with a Li^(+)/Co^(2+)factor of 216,412,outperforming previous reports.MSITS based on nanofluidic membrane proves to be a promising ion transport strategy,as it could accelerate ion transmembrane transport and alleviate the ion concentration polarization effect.This work demonstrated a collaborative system equipped with an optimized membrane for high-efficient Li extraction,providing an expanded strategy to investigate the other membrane-based applications of their common similarities in core concepts. 展开更多
关键词 Nanofluids Ion separation Lithium extraction synergistic effect Spent lithium-ion battery
下载PDF
Synergistic activation of smithsonite with copper-ammonium species for enhancing surface reactivity and xanthate adsorption 被引量:1
9
作者 Wenjuan Zhao Bin Yang +2 位作者 Yahui Yi Qicheng Feng Dianwen Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期519-527,共9页
Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on... Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on the sulfidized surface was investigated in various systems,and its effect on the surface hydrophobicity and flotation performance was revealed by multiple analytical methods and experiments.X-ray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectrometry(To F-SIMS)characterization demonstrated that the adsorption of Cu^(2+)on sulfidized smithsonite surfaces increased the active Cu—S content,regardless of treatment in any activation system.The sulfidized surface pretreated with NH_(4)^(+)-Cu^(2+)created favorable conditions for the adsorption of more Cu^(2+),significantly enhancing the smithsonite reactivity.Zeta potential determination,ultraviolet(UV)-visible spectroscopy,Fourier transform-infrared(FT-IR)measurements,and contact angle detection showed that xanthate was chemically adsorbed on the sulfidized surface,and its adsorption capacity in various systems was illustrated from qualitative and quantitative aspects.In comparison to the Na2S–Cu^(2+)and Cu^(2+)–Na2S–Cu^(2+)systems,xanthate exhibited a higher adsorption capacity on sulfidized smithsonite surfaces in NH_(4)^(+)-Cu^(2+)–Na2S–Cu^(2+)system.Hence,activation with Cu^(2+)–NH4+synergistic species prior to sulfidization significantly enhanced the mineral surface hydrophobicity,thereby increasing its flotation recovery. 展开更多
关键词 Smithsonite surface reactivity synergistic activation Copper-ammonium species Surface hydrophobicity Enhanced recovery
下载PDF
Integral Event-Triggered Attack-Resilient Control of Aircraft-on-Ground Synergistic Turning System With Uncertain Tire Cornering Stiffness 被引量:1
10
作者 Chenglong Du Fanbiao Li +2 位作者 Yang Shi Chunhua Yang Weihua Gui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1276-1287,共12页
This article proposes an integral-based event-triggered attack-resilient control method for the aircraft-on-ground(AoG) synergistic turning system with uncertain tire cornering stiffness under stochastic deception att... This article proposes an integral-based event-triggered attack-resilient control method for the aircraft-on-ground(AoG) synergistic turning system with uncertain tire cornering stiffness under stochastic deception attacks. First, a novel AoG synergistic turning model is established with synergistic reverse steering of the front and main wheels to decrease the steering angle of the AoG fuselage, thus reducing the steady-state error when it follows a path with some large curvature. Considering that the tire cornering stiffness of the front and main wheels vary during steering, a dynamical observer is designed to adaptively identify them and estimate the system state at the same time.Then, an integral-based event-triggered mechanism(I-ETM) is synthesized to reduce the transmission frequency at the observerto-controller end, where stochastic deception attacks may occur at any time with a stochastic probability. Moreover, an attackresilient controller is designed to guarantee that the closed-loop system is robust L2-stable under stochastic attacks and external disturbances. A co-design method is provided to get feasible solutions for the observer, controller, and I-ETM simultaneously. An optimization program is further presented to make a tradeoff between the robustness of the control scheme and the saving of communication resources. Finally, the low-and high-probability stochastic deception attacks are considered in the simulations. The results have illustrated that the AoG synergistic turning system with the proposed control method follows a path with some large curvature well under stochastic deception attacks. Furthermore,compared with the static event-triggered mechanisms, the proposed I-ETM has demonstrated its superiority in saving communication resources. 展开更多
关键词 Adaptive observer aircraft-on-ground(AoG)synergistic turning attack-resilient controller integral-based event-triggered mechanism L_2-stability
下载PDF
Bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize energy losses for efficient and stable perovskite solar cells 被引量:1
11
作者 Baibai Liu Ru Li +10 位作者 Qixin Zhuang Xuemeng Yu Shaokuan Gong Dongmei He Qian Zhou Hua Yang Xihan Chen Shirong Lu Zong-Xiang Xu Zhigang Zang Jiangzhao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期277-287,I0008,共12页
The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device s... The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device stability.Here,we report a bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize bulk and interfacial energy losses for high-performance perovskite photovoltaics.4-trifluoromethyl-benzamidine hydrochloride(TBHCl)containing–CF_(3),amidine cation and Cl^(-)is in advance incorporated into SnO_(2)colloid solution to realize bottom-up modification.The synergistic effect of multiple functional groups and multiple-bond-induced chemical interaction are revealed theoretically and experimentally.F and Cl^(-)can passivate oxygen vacancy and/or undercoordinated Sn^(4+)defects by coordinating with Sn^(4+).The F can suppress cation migration and modulate crystallization via hydrogen bond with FA^(+),and can passivate lead defects by coordinating with Pb^(2+).The–NH_(2)–C=NH^(+)_(2)and Cl^(-)can passivate cation and anion vacancy defects through ionic bonds with perovskites,respectively.Through TBHCl modification,the suppression of agglomeration of SnO_(2)nanoparticles,bulk and interfacial defect passivation,and release of tensile strains of perovskite films are demonstrated,which resulted in a PCE enhancement from 21.28%to 23.40%and improved stability.With post-treatment,the efficiency is further improved to 23.63%. 展开更多
关键词 Perovskite solar cells Bottom-up holistic carrier management strategy Functional group synergistic effect Defect passivation Stress release
下载PDF
SlWRKY30 and SlWRKY81 synergistically modulate tomato immunity to Ralstonia solanacearum by directly regulating SlPR-STH2 被引量:1
12
作者 Fengfeng Dang Jinhui Lin +5 位作者 Yajing Li Ruoyun Jiang Yudong Fang Fei Ding Shuilin He Yanfeng Wang 《Horticulture Research》 SCIE CSCD 2023年第5期99-111,共13页
Bacterial wilt is a devastating disease of tomato(Solanum lycopersicum)caused by Ralstonia solanacearum that severely threatens tomato production.Group III WRKY transcription factors(TFs)are implicated in the plant re... Bacterial wilt is a devastating disease of tomato(Solanum lycopersicum)caused by Ralstonia solanacearum that severely threatens tomato production.Group III WRKY transcription factors(TFs)are implicated in the plant response to pathogen infection;however,their roles in the response of tomato to R.solanacearum infection(RSI)remain largely unexplored.Here,we report the crucial role of SlWRKY30,a group III SlWRKY TF,in the regulation of tomato response to RSI.SlWRKY30 was strongly induced by RSI.SlWRKY30 overexpression reduced tomato susceptibility to RSI,and also increased H2O2 accumulation and cell necrosis,suggesting that SlWRKY30 positively regulates tomato resistance to RSI.RNA sequencing and reverse transcription–quantitative PCR revealed that SlWRKY30 overexpression significantly upregulated pathogenesis-related protein(SlPR-STH2)genes SlPR-STH2a,SlPR-STH2b,SlPR-STH2c,and SlPR-STH2d(hereafter SlPR-STH2a/b/c/d)in tomato,and these SlPR-STH2 genes were directly targeted by SlWRKY30.Moreover,four group III WRKY proteins(SlWRKY52,SlWRKY59,SlWRKY80,and SlWRKY81)interacted with SlWRKY30,and SlWRKY81 silencing increased tomato susceptibility to RSI.Both SlWRKY30 and SlWRKY81 activated SlPR-STH2a/b/c/d expression by directly binding to their promoters.Taking these results together,SlWRKY30 and SlWRKY81 synergistically regulate resistance to RSI by activating SlPR-STH2a/b/c/d expression in tomato.Our results also highlight the potential of SlWRKY30 to improve tomato resistance to RSI via genetic manipulations. 展开更多
关键词 directly synergistic IMMUNITY
原文传递
Pyrometallurgical recycling of spent lithium-ion batteries from conventional roasting to synergistic pyrolysis with organic wastes
13
作者 Chao Pan Yafei Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期547-561,I0014,共16页
The synergistic pyrolysis has been increasingly used for recycling spent lithium-ion batteries(LIBs)and organic wastes(hydrogen and carbon sources),which are in-situ transformed into various reducing agents such as H_... The synergistic pyrolysis has been increasingly used for recycling spent lithium-ion batteries(LIBs)and organic wastes(hydrogen and carbon sources),which are in-situ transformed into various reducing agents such as H_(2),CO,and char via carbothermal and/or gas thermal reduction.Compared with the conventional roasting methods,this“killing two birds with one stone”strategy can not only reduce the cost and energy consumption,but also realize the valorization of organic wastes.This paper concluded the research progress in synergistic pyrolysis recycling of spent LIBs and organic wastes.On the one hand,valued metals such as Li,Co,Ni,and Mn can be recovered through the pyrolysis of the cathode materials with inherent organic materials(e.g.,separator,electrolyte)or graphite anode.During the pyrolysis process,the organic materials are decomposed into char and gases(e.g.,CO,H_(2),and CH_(4))as reducing agents,while the cathode material is decomposed and then converted into Li_(2)CO_(3) and low-valent transition metals or their oxides via in-situ thermal reduction.The formed Li_(2)CO_(3) can be easily recovered by the water leaching process,while the formed transition metals or their oxides(e.g.,Co,CoO,Ni,MnO,etc.)can be recovered by the reductant-free acid leaching or magnetic separation process.On the other hand,organic wastes(e.g.,biomass,plastics,etc.)as abundant hydrogen and carbon sources can be converted into gas(e.g.,H_(2),CO,etc.)and char via pyrolysis.The cathode materials are decomposed and subsequently reduced by the pyrolysis gas and char.In addition,the pyrolysis oil and gas can be upgraded by catalytic reforming with the active metals derived from cathode material.Finally,great challenges are proposed to promote this promising technology in the industrial applications. 展开更多
关键词 synergistic pyrolysis Spent LIBs Biomass RECYCLING Reduction roasting
下载PDF
Tumor microenvironment-responsive artesunate loaded Z-scheme heterostructures for synergistic photo-chemodynamic therapy of hypoxic tumor
14
作者 Jie Lv Xiaoyu Wang +4 位作者 Xue Zhang Runpei Xu Shuyang Hu Shuangling Wang Meng Li 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第3期37-48,共12页
Tumor microenvironment(TME)with the particular features of severe hypoxia,insufficient endogenous H2O2,and overexpression of glutathione(GSH)markedly reduced the antitumor efficacy of monotherapy.Herein,a TME-responsi... Tumor microenvironment(TME)with the particular features of severe hypoxia,insufficient endogenous H2O2,and overexpression of glutathione(GSH)markedly reduced the antitumor efficacy of monotherapy.Herein,a TME-responsive multifunctional nanoplatform(Bi2S3@Bi@PDA-HA/Art NRs)was presented for synergistic photothermal therapy(PTT),chemodynamic therapy(CDT),and photodynamic therapy(PDT)to achieve better therapeutic outcomes.The Z-scheme heterostructured bismuth sulfide@bismuth nanorods(Bi2S3@Bi NRs)guaranteed excellent photothermal performance of the nanoplatform.Moreover,its ability to produce O2 and reactive oxygen species(ROS)synchronously could relieve tumor hypoxia and improve PDT outcomes.The densely coated polydopamine/ammonium bicarbonate(PDA/ABC)and hyaluronic acid(HA)layers on the surface of the nanoplatform enhanced the cancer-targeting capacity and induced the acidic TME-triggered in situ“bomb-like”release of Art.The CDT treatment was achieved by activating the released Art through intracellular Fe2+ions in an H2O2-independent manner.Furthermore,decreasing the glutathione peroxidase 4(GPX4)levels by Art could also increase the PDT efficiency of Bi2S3@Bi NRs.Owing to the synergistic effect,this nanoplatform displayed improved antitumor efficacy with minimal toxicity both in vitro and in vivo.Our design sheds light on the application of phototherapy combined with the traditional Chinese medicine monomer-artesunate in treating the hypoxic tumor. 展开更多
关键词 Hypoxia Z-scheme heterostructure ARTESUNATE Tumor microenvironment Glutathione peroxidase 4 synergistic therapy
下载PDF
Synergistic double-atom catalysts of metal-boron anchored on g-C_(2)N for electrochemical nitrogen reduction:Mechanistic insight and catalyst screening
15
作者 Yang Li Wei An 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期350-360,I0009,共12页
The rational design of a novel catalytic center with a sound basis remains both challenging and rewarding for the electrochemical reduction of N2(e NRR),which has provided a feasible route for achieving clean and sust... The rational design of a novel catalytic center with a sound basis remains both challenging and rewarding for the electrochemical reduction of N2(e NRR),which has provided a feasible route for achieving clean and sustainable NH3production under ambient conditions.Herein,using density functional theory calculations,we demonstrate that hybrid metal(M)-boron(B)double-atom catalysts(DACs)embedded in gC_(2)N substrate(M-B@C_(2)N,M=3d,4d and 5d transition metals)can achieve both high catalytic activity and high selectivity in e NRR.The proposed M-B@C_(2)N DACs have exhibited impressive feasibility and stability thanks to the resilient and robust C_(2)N substrate with abundant pyridinic N atoms distributed among right-sized pore structures.Our results reveal that like the metal center,the embedded B atom can actively involve in N≡N bond activation viaπ*-backdonation mechanism concomitant with the substantial charge transfer to adsorbed*N2,leading to sizable NAN bond elongation.Accordingly,both adsorption energy and NAN bond length of*N2can be employed as catalytic descriptors for predicting e NRR activity in terms of the limiting potentials(UL).Using high-throughput screening method,we found that six M-B@C_(2)N candidates have stood out as the outstanding electrocatalysts for driving e NRR,namely,M=Ti(UL=0 V),Mo(UL=0 V),Nb(UL=-0.04 V),W(UL=-0.23 V),Zr(UL=-0.26 V),V(UL=-0.28 V).The underlying origin is attributed to the balanced and constrained N-affinity of M-B dual site working in synergy,which can thus be used as one important guide of catalyst design. 展开更多
关键词 ELECTROCATALYSIS N_(2)reduction Double-atom catalyst synergistic effect DFT
下载PDF
The Increasing Role of Synergistic Effects in Carbon Mitigation and Air Quality Improvement, and Its Associated Health Benefits in China
16
作者 Jie Wang Xi Lu +6 位作者 Pengfei Du Haotian Zheng Zhaoxin Dong Zihua Yin Jia Xing Shuxiao Wang Jiming Hao 《Engineering》 SCIE EI CAS CSCD 2023年第1期103-111,共9页
A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such... A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such synergistic effects;hence, existing studies lack a consistent framework for comparison. Here, we introduce a new synergistic indicator defined as the pollutant generation per gross domestic product (GDP) and adopt an integrated analysis framework by linking the logarithmic mean Divisia index (LMDI) method, response surface model (RSM), and global exposure mortality model (GEMM) to evaluate the synergistic effects of carbon mitigation on both air pollutant reduction and public health in China. The results show that synergistic effects played an increasingly important role in the emissions mitigation of SO_(2), NOx, and primary particulate matter with an aerodynamic diameter no greater than 2.5 μm (PM2.5), and the synergistic mitigation of pollutants respectively increase from 3.1, 1.4, and 0.3 Mt during the 11th Five-Year Plan (FYP) (2006–2010) to 5.6, 3.7, and 1.9 Mt during the 12th FYP (2011–2015). Against the non-control scenario, synergistic effects alone contributed to a 15% reduction in annual mean PM2.5 concentration, resulting in the prevention of 0.29 million (95% confidential interval: 0.28–0.30) PM2.5-attributable excess deaths in 2015. Synergistic benefits to air quality improvement and public health were remarkable in the developed and population-dense eastern provinces and municipalities. With the processes of urbanization and carbon neutrality in the future, synergistic effects are expected to continue to increase. Realizing climate targets in advance in developed regions would concurrently bring strong synergistic effects to air quality and public health. 展开更多
关键词 synergistic effects Indicator Carbon mitigation Air pollution control Spatial and temporal disparities
下载PDF
Methylene blue intercalated vanadium oxide with synergistic energy storage mechanism for highly efficient aqueous zinc ion batteries
17
作者 Yunxiao Tong Ying Zang +8 位作者 Senda Su Yinggui Zhang Junzhuo Fang Yongqing Yang Xiaoman Li Xiang Wu Fuming Chen Jianhua Hou Min Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期269-279,I0007,共12页
With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hyb... With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hybrid cathode is adopted for high efficient aqueous zinc-ion batteries(AZIBs).Methylene blue(MB)intercalated vanadium oxide(HVO-MB)was synthesized through sol-gel and ion exchange method.Compared with other organic-inorganic intercalation cathode,not only can the MB intercalation enlarge the HVO interlayer spacing to improve ion mobility,but also provide coordination reactions with the Zn^(2+)to enhance the intrinsic electrochemical reaction kinetics of the hybrid electrode.As a key component for the cathode of AZIBs,HVO-MB contributes a specific capacity of 418 mA h g^(-1) at 0.1 A g^(-1),high rate capability(243 mA h g^(-1) at 5 A g^(-1))and extraordinary stability(88%of capacity retention after 2000cycles at a high current density of 5 A g^(-1))in 3 M Zn(CF_(3)SO_(3))_(2) aqueous electrolyte.The electrochemical kinetics reveals HVO-MB characterized with large pseudocapacitance charge storage behavior due to the fast ion migration provided by the coordination reaction and expanded interlayer distance.Furthermore,a mixed energy storage mechanism involving Zn^(2+)insertion and coordination reaction is confirmed by various ex-situ characterization.Thus,this work opens up a new path for constructing the high performance cathode of AZIBs through organic-inorganic hybridization. 展开更多
关键词 synergistic energy storage mechanism Aqueous zinc-ion batteries Vanadium oxides Pre-intercalation strategy Methylene blue
下载PDF
Nanoparticle-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy:Novel insights and perspectives
18
作者 Haiying Wang Chu Qiao +2 位作者 Qiutong Guan Minjie Wei Zhenhua Li 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第4期22-44,共23页
Current antitumor monotherapy has many limitations,highlighting the need for novel synergistic anticancer strategies.Ferroptosis is an iron-dependent form of nonapoptotic cell death that plays a pivotal regulatory rol... Current antitumor monotherapy has many limitations,highlighting the need for novel synergistic anticancer strategies.Ferroptosis is an iron-dependent form of nonapoptotic cell death that plays a pivotal regulatory role in tumorigenesis and treatment.Photodynamic therapy(PDT)causes irreversible chemical damage to target lesions and is widely used in antitumor therapy.However,PDT’s effectiveness is usually hindered by several obstacles,such as hypoxia,excess glutathione(GSH),and tumor resistance.Ferroptosis improves the anticancer efficacy of PDT by increasing oxygen and reactive oxygen species(ROS)or reducing GSH levels,and PDT also enhances ferroptosis induction due to the ROS effect in the tumor microenvironment(TME).Strategies based on nanoparticles(NPs)can subtly exploit the potential synergy of ferroptosis and PDT.This review explores recent advances and current challenges in the landscape of the underlyingmechanisms regulating ferroptosis and PDT,as well as nano delivery system-mediated synergistic anticancer activity.These include polymers,biomimetic materials,metal organic frameworks(MOFs),inorganics,and carrier-free NPs.Finally,we highlight future perspectives of this novel emerging paradigm in targeted cancer therapies. 展开更多
关键词 NANOPARTICLES Ferroptosis Photodynamic therapy synergistic anticancer therapy Reactive oxygen species
下载PDF
Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells
19
作者 Cheng Gong Cong Zhang +4 位作者 Qixin Zhuang Haiyun Li Hua Yang Jiangzhao Chen Zhigang Zang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期32-45,共14页
The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination.In addition,poor perovskite crystallization and incomplete conversion of PbI_(2) to perovskite restrict further en... The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination.In addition,poor perovskite crystallization and incomplete conversion of PbI_(2) to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition.Herein,a buried interface stabilization strategy that relies on the synergy of fluorine(F)and sulfonyl(S=O)functional groups is proposed.A series of potassium salts containing halide and non-halogen anions are employed to modify SnO_(2)/perovskite buried interface.Multiple chemical bonds including hydrogen bond,coordination bond and ionic bond are realized,which strengthens interfacial contact and defect passivation effect.The chemical interaction between modification molecules and perovskite along with SnO_(2) heightens incessantly as the number of S=O and F augments.The chemical interaction strength between modifiers and perovskite as well as SnO_(2) gradually increases with the increase in the number of S=O and F.The defect passivation effect is positively correlated with the chemical interaction strength.The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates.Compared with Cl−,all non-halogen anions perform better in crystallization optimization,energy band regulation and defect passivation.The device with potassium bis(fluorosulfonyl)imide achieves a tempting efficiency of 24.17%. 展开更多
关键词 Perovskite solar cells Buried interface Multiple chemical bonds synergistic effect of functional groups Defect passivation
下载PDF
Synergistic effect of total ionizing dose on single-event gate rupture in SiC power MOSFETs
20
作者 曹荣幸 汪柯佳 +9 位作者 孟洋 李林欢 赵琳 韩丹 刘洋 郑澍 李红霞 蒋煜琪 曾祥华 薛玉雄 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期666-672,共7页
The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to ... The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer. 展开更多
关键词 SiC power MOSFET total ionizing dose(TID) single event gate rupture(SEGR) synergistic effect TCAD simulation
原文传递
上一页 1 2 36 下一页 到第
使用帮助 返回顶部