The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri...The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.展开更多
The corresponding corrected method is proposed for the INS ( INS-Inertial Navigation System ) accumulated error of large transport aircraft. System errors contain aircraft position error, altitude error and speed erro...The corresponding corrected method is proposed for the INS ( INS-Inertial Navigation System ) accumulated error of large transport aircraft. System errors contain aircraft position error, altitude error and speed error,one is increasing the accuracy of hardw are; the other is development of low cost softw are algorithms. Because of improving hardw are is more difficult in my country at present, developing softw are algorithms is essential w ay,w hich have been validated in my types of airplane. The combined heuristic algorithms ( ABPNN,Advanced Back-propagation neural netw orks algorithm and LSM -least square method) are presented,w hich incorporates the effects of flight region and measured terrain height data by radar and barometer. Based on this algorithm,the appropriate match region w as gotten by recognition of fiducial digital map in real time online. In process of w ork,the minimum of position error as a cost function and the constraint conditions are gave,the flight positions are recognized in real time and continuously,least sum of square is calculated based on LSM ,in other w ords,the optimized result is obtained. The simulation case demonstrate that the method is very successful,the correct rate of recognition is more 90 percent. In w ords,the algorithm presented is economical,validation and effective.展开更多
<div style="text-align:justify;"> According to the problem that the low measurement accuracy of TH-1 satellite star sensor, the low frequency and “slow drift” error which cannot be ignored in the att...<div style="text-align:justify;"> According to the problem that the low measurement accuracy of TH-1 satellite star sensor, the low frequency and “slow drift” error which cannot be ignored in the attitude determination system, resulting in obvious random error in the horizontal position and elevation direction, and the change of the error with time and latitude, cannot be calibrated by the ground field of the real problem. In this paper, a low frequency detection model is established by using the principle of relative orientation, and the low frequency error is obtained by parallax elimination. Finally, the satellite attitude is compensated and the more accurate exterior orientation elements are obtained, thus improving the positioning accuracy and stability. The experimental results show that: the proposed methods are feasible, and by using the model to dynamically calibrate the exterior orientation angle elements on orbit, the plane and elevation errors of the ground points can be basically eliminated. The global uncontrollable positioning accuracy and stability of the photogrammetry satellite are improved. </div>展开更多
In required navigation performance(RNP), total system error(TSE) is estimated to provide a timely warning in the presence of an excessive error. In this paper, by analyzing the underlying formation mechanism, the ...In required navigation performance(RNP), total system error(TSE) is estimated to provide a timely warning in the presence of an excessive error. In this paper, by analyzing the underlying formation mechanism, the TSE estimation is modeled as the estimation fusion of a fixed bias and a Gaussian random variable. To address the challenge of high computational load induced by the accurate numerical method, two efficient methods are proposed for real-time application, which are called the circle tangent ellipse method(CTEM) and the line tangent ellipse method(LTEM),respectively. Compared with the accurate numerical method and the traditional scalar quantity summation method(SQSM), the computational load and accuracy of these four methods are extensively analyzed. The theoretical and experimental results both show that the computing time of the LTEM is approximately equal to that of the SQSM, while it is only about 1/30 and 1/6 of that of the numerical method and the CTEM. Moreover, the estimation result of the LTEM is parallel with that of the numerical method, but is more accurate than those of the SQSM and the CTEM. It is illustrated that the LTEM is quite appropriate for real-time TSE estimation in RNP application.展开更多
The system error of guidance instruments together with that of orbit tracking is considered and a mathematical model for estimating both of them is established. A thorough investigation of the accurate calculation of ...The system error of guidance instruments together with that of orbit tracking is considered and a mathematical model for estimating both of them is established. A thorough investigation of the accurate calculation of circumstance function and the effects of the system error model is made. Finally, the estimator of the two kinds of errors is presented based on nonlinear regression model and the accuracy of the presented estimator is given. Theoretical analysis and simulation results confirm the validity and effectiveness of this method.展开更多
Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixtur...Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixture.How to reduce the position and orientation deviation of workpiece has become a technical problem of improving the processing quality of workpiece.In order to increase machining accuracy,an implementation scheme of fixture system comprehensive errors(FSCE) compensation is proposed.A FSCE parameter model is established by analyzing the influence of contact points on the position and orientation of workpiece.Meanwhile,a parameter identification method for FSCE parameter model is presented by using the 3-2-1 deterministic positioning fixture,which determines the model parameters.Moreover,a FSCE compensation model is formulated to study the compensation value of the cutting position.By using RenishawOMP60 Probe and combining vertical machining centre(SKVH850) equipment with SKY2001 Open CNC System,on-machine verification system(OMVS) is built to measure FSCE successfully.The processing error can be reduced by analyzing the cutting position of the tool with the homogeneous transformation of space coordinate system.Finally,the compensation experiment of real time errors is conducted,and the cylindricality and perpendicularity errors of hole surface are reduced by 30.77% and 28.57%,respectively.This paper provides a new way of realizing the compensation of FCSE,which can improve the machining accuracy of workpiece largely.展开更多
Affected by common target selection,target motion estimation and time alignment,the radar system error registration algorithm is greatly limited in application. By using communication and time synchronization function...Affected by common target selection,target motion estimation and time alignment,the radar system error registration algorithm is greatly limited in application. By using communication and time synchronization function of a data link network,a collaborative algorithm is proposed,which makes use of a virtual coordinates constructed by airplane to get high precision measurement source and realize effective estimation of the system error. This algorithm is based on Kalman filter and does not require high capacities in memory and calculation. Simulated results show that the algorithm has better convergence performance and estimation precision,no constrain on sampling period and accords with transfer characteristic of data link and tactical internet perfectly.展开更多
Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase erro...Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.展开更多
Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal ...Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.展开更多
In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical...In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing.展开更多
To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are ...To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are introduced.The model of friction torque on the joints and torque on docking mechanism are built.Dynamics equation of actuator is built by the Lagrange equation and the Nielsen equation.Under the condition of 24 different angle groups,the calculation of dynamics equation is built by using MATLAB/SIMULINK platform and the kinematic errors of actuator are obtained.The attitude error models of docking mechanism are built.Results shows that the main angle error sources of yaw,row,pitch are not identical.The attitude error of yaw angle can be decreased by compensating the angle error around xaxis.The attitude error of row angle mainly originates in the system error,and it can be eliminated by adjusting non-orthogonal degree.展开更多
This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The pap...This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.展开更多
The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises i...The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.展开更多
In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformat...In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some convergence conditions. Two examples are given to demonstrate the validity of the proposed optimal tracking control scheme for chaotic systems.展开更多
A valid preview control technique is presented for processing servo systemswith input delay based on extended error systems with input delay. The technique usesthe concept of error systems, establishes extended error ...A valid preview control technique is presented for processing servo systemswith input delay based on extended error systems with input delay. The technique usesthe concept of error systems, establishes extended error systems with input delay and de-rives preview control laws based on minimization of evaluation function. Finally, simula-tion is done on linear direct current motor without brush. The results reveal that the tech-nique proposed herein is valid for improving performance of servo systems.展开更多
BACKGROUND: Communication failure in prehospital emergency medicine can affect patient safety as it does in other areas of medicine as well. We analyzed the database of the critical incident reporting system for preho...BACKGROUND: Communication failure in prehospital emergency medicine can affect patient safety as it does in other areas of medicine as well. We analyzed the database of the critical incident reporting system for prehospital emergency medicine in Germany retrospectively regarding communication errors.METHODS: Experts of prehospital emergency medicine and risk management screened the database for verbal communication failure, non-verbal communication failure and missing communication at all.RESULTS: Between 2005 and 2015, 845 reports were analyzed, of which 247 reports were considered to be related to communication failure. An arbitrary classifi cation resulted in six different kinds: 1) no acknowledgement of a suggestion; 2) medication error; 3) miscommunication with dispatcher; 4) utterance heard/understood improperly; 5) missing information transfer between two persons; and 6) other communication failure.CONCLUSION: Communication defi cits can lead to critical incidents in prehospital emergency medicine and are a very important aspect in patient safety.展开更多
To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied sig...To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.展开更多
Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based ...Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.展开更多
Single event effects(SEEs) induced by radiations become a significant challenge to the reliability for modern electronic systems. To evaluate SEEs susceptibility for microelectronic devices and integrated circuits(ICs...Single event effects(SEEs) induced by radiations become a significant challenge to the reliability for modern electronic systems. To evaluate SEEs susceptibility for microelectronic devices and integrated circuits(ICs), an SEE testing system with flexibility and robustness was developed at Heavy Ion Research Facility in Lanzhou(HIRFL). The system is compatible with various types of microelectronic devices and ICs, and supports plenty of complex and high-speed test schemes and plans for the irradiated devices under test(DUTs). Thanks to the combination of meticulous circuit design and the hardened logic design, the system has additional performances to avoid an overheated situation and irradiations by stray radiations. The system has been tested and verified by experiments for irradiating devices at HIRFL.展开更多
基金This work was supported by the National Natural Science Foundation of China(61903086,61903366,62001115)the Natural Science Foundation of Hunan Province(2019JJ50745,2020JJ4280,2021JJ40133)the Fundamentals and Basic of Applications Research Foundation of Guangdong Province(2019A1515110136).
文摘The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.
文摘The corresponding corrected method is proposed for the INS ( INS-Inertial Navigation System ) accumulated error of large transport aircraft. System errors contain aircraft position error, altitude error and speed error,one is increasing the accuracy of hardw are; the other is development of low cost softw are algorithms. Because of improving hardw are is more difficult in my country at present, developing softw are algorithms is essential w ay,w hich have been validated in my types of airplane. The combined heuristic algorithms ( ABPNN,Advanced Back-propagation neural netw orks algorithm and LSM -least square method) are presented,w hich incorporates the effects of flight region and measured terrain height data by radar and barometer. Based on this algorithm,the appropriate match region w as gotten by recognition of fiducial digital map in real time online. In process of w ork,the minimum of position error as a cost function and the constraint conditions are gave,the flight positions are recognized in real time and continuously,least sum of square is calculated based on LSM ,in other w ords,the optimized result is obtained. The simulation case demonstrate that the method is very successful,the correct rate of recognition is more 90 percent. In w ords,the algorithm presented is economical,validation and effective.
文摘<div style="text-align:justify;"> According to the problem that the low measurement accuracy of TH-1 satellite star sensor, the low frequency and “slow drift” error which cannot be ignored in the attitude determination system, resulting in obvious random error in the horizontal position and elevation direction, and the change of the error with time and latitude, cannot be calibrated by the ground field of the real problem. In this paper, a low frequency detection model is established by using the principle of relative orientation, and the low frequency error is obtained by parallax elimination. Finally, the satellite attitude is compensated and the more accurate exterior orientation elements are obtained, thus improving the positioning accuracy and stability. The experimental results show that: the proposed methods are feasible, and by using the model to dynamically calibrate the exterior orientation angle elements on orbit, the plane and elevation errors of the ground points can be basically eliminated. The global uncontrollable positioning accuracy and stability of the photogrammetry satellite are improved. </div>
基金supported by the National Basic Research Program of China (No. 2010CB731805)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 60921001)the Special Fund for Basic Research on Scientific Instruments of China (No. 2011YQ04008301)
文摘In required navigation performance(RNP), total system error(TSE) is estimated to provide a timely warning in the presence of an excessive error. In this paper, by analyzing the underlying formation mechanism, the TSE estimation is modeled as the estimation fusion of a fixed bias and a Gaussian random variable. To address the challenge of high computational load induced by the accurate numerical method, two efficient methods are proposed for real-time application, which are called the circle tangent ellipse method(CTEM) and the line tangent ellipse method(LTEM),respectively. Compared with the accurate numerical method and the traditional scalar quantity summation method(SQSM), the computational load and accuracy of these four methods are extensively analyzed. The theoretical and experimental results both show that the computing time of the LTEM is approximately equal to that of the SQSM, while it is only about 1/30 and 1/6 of that of the numerical method and the CTEM. Moreover, the estimation result of the LTEM is parallel with that of the numerical method, but is more accurate than those of the SQSM and the CTEM. It is illustrated that the LTEM is quite appropriate for real-time TSE estimation in RNP application.
文摘The system error of guidance instruments together with that of orbit tracking is considered and a mathematical model for estimating both of them is established. A thorough investigation of the accurate calculation of circumstance function and the effects of the system error model is made. Finally, the estimator of the two kinds of errors is presented based on nonlinear regression model and the accuracy of the presented estimator is given. Theoretical analysis and simulation results confirm the validity and effectiveness of this method.
基金supported by National Natural Science Foundation of China (Grant No. 50975200)National Key Technologies R & D Programmer of China (Grant No. 2009ZX04014-021)
文摘Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixture.How to reduce the position and orientation deviation of workpiece has become a technical problem of improving the processing quality of workpiece.In order to increase machining accuracy,an implementation scheme of fixture system comprehensive errors(FSCE) compensation is proposed.A FSCE parameter model is established by analyzing the influence of contact points on the position and orientation of workpiece.Meanwhile,a parameter identification method for FSCE parameter model is presented by using the 3-2-1 deterministic positioning fixture,which determines the model parameters.Moreover,a FSCE compensation model is formulated to study the compensation value of the cutting position.By using RenishawOMP60 Probe and combining vertical machining centre(SKVH850) equipment with SKY2001 Open CNC System,on-machine verification system(OMVS) is built to measure FSCE successfully.The processing error can be reduced by analyzing the cutting position of the tool with the homogeneous transformation of space coordinate system.Finally,the compensation experiment of real time errors is conducted,and the cylindricality and perpendicularity errors of hole surface are reduced by 30.77% and 28.57%,respectively.This paper provides a new way of realizing the compensation of FCSE,which can improve the machining accuracy of workpiece largely.
基金Sponsored by the National Natural Science Foundation of China (60672080)National 863 High Technology Project (2008AA01Z216)
文摘Affected by common target selection,target motion estimation and time alignment,the radar system error registration algorithm is greatly limited in application. By using communication and time synchronization function of a data link network,a collaborative algorithm is proposed,which makes use of a virtual coordinates constructed by airplane to get high precision measurement source and realize effective estimation of the system error. This algorithm is based on Kalman filter and does not require high capacities in memory and calculation. Simulated results show that the algorithm has better convergence performance and estimation precision,no constrain on sampling period and accords with transfer characteristic of data link and tactical internet perfectly.
基金This project is supported by Aeronautics Foundation of China (No.00- E51022).
文摘Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.
基金the financial support by the National 863 Project ( No. 2012AA121503 )the China NSF projects ( No. 61377012 , No. 61505094 )China Postdoctoral Science Foundation funded project ( 2015M571034 )
文摘Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61171147 and 60702022)
文摘In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing.
基金supported by National Natural Science Foundation of China(No.51375125)the Foundation for Distinguished Young Scholars of Heilongjiang Province,China(No.JC201111)the Program for New Century Excellent Talents in University(No.NCET10-0146)
文摘To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are introduced.The model of friction torque on the joints and torque on docking mechanism are built.Dynamics equation of actuator is built by the Lagrange equation and the Nielsen equation.Under the condition of 24 different angle groups,the calculation of dynamics equation is built by using MATLAB/SIMULINK platform and the kinematic errors of actuator are obtained.The attitude error models of docking mechanism are built.Results shows that the main angle error sources of yaw,row,pitch are not identical.The attitude error of yaw angle can be decreased by compensating the angle error around xaxis.The attitude error of row angle mainly originates in the system error,and it can be eliminated by adjusting non-orthogonal degree.
基金This study was supported by the National Key Basic Research and Development Project of China 2004CB418303 the National Natural Science foundation of China under Grant Nos. 40305012 and 40475027Jiangsu Key Laboratory of Meteorological Disaster KLME0601.
文摘This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.
基金This project is supported by Program for New Century Excellent Talents in University,China(No.NCET-04-0325).
文摘The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.
基金supported by the Open Research Project from SKLMCCS (Grant No. 20120106)the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-TP-13-018A)+1 种基金the Postdoctoral Science Foundation of China (Grant No. 2013M530527)the National Natural Science Foundation of China (Grant Nos. 61304079, 61125306, and 61034002)
文摘In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some convergence conditions. Two examples are given to demonstrate the validity of the proposed optimal tracking control scheme for chaotic systems.
文摘A valid preview control technique is presented for processing servo systemswith input delay based on extended error systems with input delay. The technique usesthe concept of error systems, establishes extended error systems with input delay and de-rives preview control laws based on minimization of evaluation function. Finally, simula-tion is done on linear direct current motor without brush. The results reveal that the tech-nique proposed herein is valid for improving performance of servo systems.
文摘BACKGROUND: Communication failure in prehospital emergency medicine can affect patient safety as it does in other areas of medicine as well. We analyzed the database of the critical incident reporting system for prehospital emergency medicine in Germany retrospectively regarding communication errors.METHODS: Experts of prehospital emergency medicine and risk management screened the database for verbal communication failure, non-verbal communication failure and missing communication at all.RESULTS: Between 2005 and 2015, 845 reports were analyzed, of which 247 reports were considered to be related to communication failure. An arbitrary classifi cation resulted in six different kinds: 1) no acknowledgement of a suggestion; 2) medication error; 3) miscommunication with dispatcher; 4) utterance heard/understood improperly; 5) missing information transfer between two persons; and 6) other communication failure.CONCLUSION: Communication defi cits can lead to critical incidents in prehospital emergency medicine and are a very important aspect in patient safety.
基金Sponsored by the National Natural Science Foundation of China(60604011)
文摘To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.
基金The project was supported by Aeronautics Foundation of China (00E51022).
文摘Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.
基金Supported by the National Natural Science Foundation of China(No.11079045,11179003 and 11305233)the Important Direction Project of the CAS Knowledge Innovation Program(No.KJCX2-YWN27)
文摘Single event effects(SEEs) induced by radiations become a significant challenge to the reliability for modern electronic systems. To evaluate SEEs susceptibility for microelectronic devices and integrated circuits(ICs), an SEE testing system with flexibility and robustness was developed at Heavy Ion Research Facility in Lanzhou(HIRFL). The system is compatible with various types of microelectronic devices and ICs, and supports plenty of complex and high-speed test schemes and plans for the irradiated devices under test(DUTs). Thanks to the combination of meticulous circuit design and the hardened logic design, the system has additional performances to avoid an overheated situation and irradiations by stray radiations. The system has been tested and verified by experiments for irradiating devices at HIRFL.