Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller ...Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.展开更多
Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system....Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association.展开更多
As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was ap...As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.展开更多
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c...Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.展开更多
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occ...Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occlusion,loss,scale variation,background clutter,illumination variation,etc.,which bring great challenges to realize accurate and real‐time tracking.Tracking based on Siamese networks promotes the application of deep learning in the field of target tracking,ensuring both accuracy and real‐time performance.However,due to its offline training,it is difficult to deal with the fast motion,serious occlusion,loss and deformation of the target during tracking.Therefore,it is very helpful to improve the performance of the Siamese networks by learning new features of the target quickly and updating the target position in time online.The broad learning system(BLS)has a simple network structure,high learning efficiency,and strong feature learning ability.Aiming at the problems of Siamese networks and the characteristics of BLS,a target tracking method based on BLS is proposed.The method combines offline training with fast online learning of new features,which not only adopts the powerful feature representation ability of deep learning,but also skillfully uses the BLS for re‐learning and re‐detection.The broad re‐learning information is used for re‐detection when the target tracking appears serious occlusion and so on,so as to change the selection of the Siamese networks search area,solve the problem that the search range cannot meet the fast motion of the target,and improve the adaptability.Experimental results show that the proposed method achieves good results on three challenging datasets and improves the performance of the basic algorithm in difficult scenarios.展开更多
A new type of digital video monitoring system (DVMS) named user defined target tracking system (UDTTS), was developed based on the digital image processing (DIP) technology and the practice demands of construction sit...A new type of digital video monitoring system (DVMS) named user defined target tracking system (UDTTS), was developed based on the digital image processing (DIP) technology and the practice demands of construction site management in hydraulic engineering. The position, speed, and track of moving targets such as humans and vehicles, which could be calculated by their locations at anytime in images basically, were required for management. The proposed algorithm, dependent on the context-sensitive moving information of image sequences which was much more than one or two images provided, compared the blobs’ properties in current frame to the trajectories of targets in the previous frames and then corresponded them. The processing frame rate is about 10fps with the image 240-by-120 pixels. Experimental results show that position, direction, and speed measurements have an accuracy level compatible with the manual work. The user-define process makes the UDTTS available to the public whenever appropriate.展开更多
This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received ...This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.展开更多
In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the...In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the accumulated errors in inertial measurements.This paper aims to improve the localization and tracking accuracy by involving current information as extra references.We first integrate current measurements and maps with belief propagation and design a distributed current-aided message-passing scheme that theoretically solves the localization and tracking problems.Based on this scheme,we propose particle-based cooperative localization and target tracking algorithms,named CaCL and CaTT,respectively.In AUV localization,CaCL uses the current measurements to correct the predicted and transmitted position information and alleviates the impact of the accumulated errors in inertial measurements.With target tracking,the current maps are applied in CaTT to modify the position prediction of the target which is calculated through historical estimates.The effectiveness and robustness of the proposed methods are validated through various simulations by comparisons with alternative methods under different trajectories and current conditions.展开更多
This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’...This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.展开更多
This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic env...This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.展开更多
In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two probl...In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.展开更多
According to the characteristic of maneuvering targets tracking system, adaptive track predicting control is proposed from the point of predicting the motion track of the maneuvering target. For this method, least mea...According to the characteristic of maneuvering targets tracking system, adaptive track predicting control is proposed from the point of predicting the motion track of the maneuvering target. For this method, least mean square(LMS) adaptive filter is applied to estimate the future track of the target. The structure of this filter is simple and the calculation amount is small. It is therefore suitable to being used in real-time control system. Testing results have proved that the control method can improve the tracking precision for maneuvering targets obviously.展开更多
A kalman filter in the spherical-rectangular coordinate system to track a maneuvering target is introduced. A dynamic model with extended state vector is proposed in this paper to improve the state estimation (i.e. p...A kalman filter in the spherical-rectangular coordinate system to track a maneuvering target is introduced. A dynamic model with extended state vector is proposed in this paper to improve the state estimation (i.e. position, velocity and acceleration) even the sensor data(i.e. range, azimuth angle and elevation angle ) is color contaminated. The Kalman filter equations are decoupled by proper coordinate transformation and using filter gain rotation algorithm. Monto Carlo simulation is performed for different kinds of target trajectories(with the same measurement noise) and the root mean square values of estimation errors are computed. Results show that there is significant improvement in tracking capability over the methods discussed by other researchers.展开更多
In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the ...In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.展开更多
Target tracking is a typical and important application of wireless sensor networks(WSNs).Existing target tracking protocols focus mainly on energy efficiency,and little effort has been put into network management and ...Target tracking is a typical and important application of wireless sensor networks(WSNs).Existing target tracking protocols focus mainly on energy efficiency,and little effort has been put into network management and real-time data routing,which are also very important issues for target tracking.In this paper,we propose a scalable cluster-based target tracking framework,namely the hierarchical prediction strategy(HPS),for energyefficient and real-time target tracking in large-scale WSNs.HPS organizes sensor nodes into clusters by using suitable clustering protocols which are beneficial for network management and data routing.As a target moves in the network,cluster heads predict the target trajectory using Kalman filter and selectively activate the next round of sensors in advance to keep on tracking the target.The estimated locations of the target are routed to the base station via the backbone composed of the cluster heads.A soft handoff algorithm is proposed in HPS to guarantee smooth tracking of the target when the target moves from one cluster to another.Under the framework of HPS,we design and implement an energy-efficient target tracking system,HierTrack,which consists of 36 sensor motes,a sink node,and a base station.Both simulation and experimental results show the efficiency of our system.展开更多
In wireless communication environment, the time-varying channel and angular spreads caused by multipath fading and the mobility of Mobile Stations (MS) degrade the performance of the conventional Direction-Of-Arrival ...In wireless communication environment, the time-varying channel and angular spreads caused by multipath fading and the mobility of Mobile Stations (MS) degrade the performance of the conventional Direction-Of-Arrival (DOA) tracking algorithms. On the other hand, although the DOA estimation methods based on the Maximum Likelihood (ML) principle have higher resolution than the beamforming and the subspace based methods, prohibitively heavy computation limits their practical applications. This letter first proposes a new suboptimal DOA estimation algorithm that combines the advantages of the lower complexity of subspace algorithm and the high accuracy of ML based algo- rithms, and then proposes a Kalman filtering based tracking algorithm to model the dynamic property of directional changes for mobile terminals in such a way that the association between the estimates made at different time points is maintained. At each stage during tracking process, the current suboptimal estimates of DOA are treated as measurements, predicted and updated via a Kalman state equation, hence adaptive tracking of moving MS can be carried out without the need to perform unduly heavy computations. Computer simulation results show that this proposed algorithm has better per- formance of DOA estimation and tracking of MS than the conventional ML or subspace based algo- rithms in terms of accuracy and robustness.展开更多
Target tracking using wireless sensor networks offers multiple challenges because it usually involves intensive computation and requires accurate methods for tracking and energy consumption. Above all, scalability, en...Target tracking using wireless sensor networks offers multiple challenges because it usually involves intensive computation and requires accurate methods for tracking and energy consumption. Above all, scalability, energy optimization, efficiency, and overhead reduction are some among the key tasks for any protocol designed to perform target tracking using large scale sensor networks. Border surveillance systems, on the other side, need to report border crossings in a real time manner. They should provide large coverage, lower energy consumption, real time crossing detection, and use efficient tools to report crossing information. In this paper, we present a scheme, called Border Cooperative and Predictive Tracking protocol (BCTP), capable of energyaware surveillance and continuous tracking of objects and individuals’ crossing a country border and anticipating target motion within a thick strip along the border and estimating the target exit zone and time.展开更多
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i...To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.展开更多
This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and ...This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and subsequently transmits the raw observation data to the fusion center,which formulates a centralized tracking network structure.In order to establish a practical blanket jamming environment,we suppose that each target carries the self-defense jammer which automatically implements blanket jamming to the radar nodes that exceed the preset interception probability.Subsequently,the Predicted Conditional Cramer-Rao Lower Bound(PC-CRLB)is derived and utilized as the tracking accuracy criterion.Aimed at ensuring both the tracking performance and the Low Probability of Intercept(LPI)performance,the resource-saving scheduling model is formulated to minimize the transmit power consumption while meeting the requirements of tracking accuracy.Finally,the Modified Zoutendijk Method Of Feasible Directions(MZMFD)-based two-stage solution technique is adopted to solve the formulated non-convex optimization model.Simulation results show the effectiveness of the proposed JRNSPA scheme.展开更多
基金the Ministerial Level Advanced Research Foundation (061103)
文摘Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.
基金Supported by the National Natural Science Foundation of China(11078001)
文摘Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association.
基金Project(51105372) supported by the National Natural Science Foundation of ChinaProject(JC12-03-01) supported by the Research Plan of National University of Defense Technology,China
文摘As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.
基金funded by the National Natural Science Foundation of China,grant number 42074176,U1939204。
文摘Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.
基金supported in part by the National Natural Science Foundation of China(under Grant Nos.51939001,61976033,U1813203,61803064,and 61751202)Natural Foundation Guidance Plan Project of Liaoning(2019‐ZD‐0151)+2 种基金Science&Technology Innovation Funds of Dalian(under Grant No.2018J11CY022)Fundamental Research Funds for the Central Universities(under Grant No.3132019345)Dalian High‐level Talents Innovation Support Program(Young Sci-ence and Technology Star Project)(under Grant No.2021RQ067).
文摘Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occlusion,loss,scale variation,background clutter,illumination variation,etc.,which bring great challenges to realize accurate and real‐time tracking.Tracking based on Siamese networks promotes the application of deep learning in the field of target tracking,ensuring both accuracy and real‐time performance.However,due to its offline training,it is difficult to deal with the fast motion,serious occlusion,loss and deformation of the target during tracking.Therefore,it is very helpful to improve the performance of the Siamese networks by learning new features of the target quickly and updating the target position in time online.The broad learning system(BLS)has a simple network structure,high learning efficiency,and strong feature learning ability.Aiming at the problems of Siamese networks and the characteristics of BLS,a target tracking method based on BLS is proposed.The method combines offline training with fast online learning of new features,which not only adopts the powerful feature representation ability of deep learning,but also skillfully uses the BLS for re‐learning and re‐detection.The broad re‐learning information is used for re‐detection when the target tracking appears serious occlusion and so on,so as to change the selection of the Siamese networks search area,solve the problem that the search range cannot meet the fast motion of the target,and improve the adaptability.Experimental results show that the proposed method achieves good results on three challenging datasets and improves the performance of the basic algorithm in difficult scenarios.
文摘A new type of digital video monitoring system (DVMS) named user defined target tracking system (UDTTS), was developed based on the digital image processing (DIP) technology and the practice demands of construction site management in hydraulic engineering. The position, speed, and track of moving targets such as humans and vehicles, which could be calculated by their locations at anytime in images basically, were required for management. The proposed algorithm, dependent on the context-sensitive moving information of image sequences which was much more than one or two images provided, compared the blobs’ properties in current frame to the trajectories of targets in the previous frames and then corresponded them. The processing frame rate is about 10fps with the image 240-by-120 pixels. Experimental results show that position, direction, and speed measurements have an accuracy level compatible with the manual work. The user-define process makes the UDTTS available to the public whenever appropriate.
基金supported in part by the National Science Foundation of China(61873335,61833011)the Project of Scie nce and Technology Commission of Shanghai Municipality,China(20ZR1420200,21SQBS01600,19510750300,21190780300)。
文摘This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.
基金supported in part by the National Natural Science Foundation of China(62203299,61773264,61922058,61803261,61801295)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2020ZD206,SL2020MS010,SL2020MS015)。
文摘In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the accumulated errors in inertial measurements.This paper aims to improve the localization and tracking accuracy by involving current information as extra references.We first integrate current measurements and maps with belief propagation and design a distributed current-aided message-passing scheme that theoretically solves the localization and tracking problems.Based on this scheme,we propose particle-based cooperative localization and target tracking algorithms,named CaCL and CaTT,respectively.In AUV localization,CaCL uses the current measurements to correct the predicted and transmitted position information and alleviates the impact of the accumulated errors in inertial measurements.With target tracking,the current maps are applied in CaTT to modify the position prediction of the target which is calculated through historical estimates.The effectiveness and robustness of the proposed methods are validated through various simulations by comparisons with alternative methods under different trajectories and current conditions.
基金the National Natural Science Foundation of China(61933010)the Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-QN-0733).
文摘This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Program of National Natural Science Foundation of China (No. 60934003)Key Project for Natural Science Research of Hebei Education Department(No. ZD200908)
文摘This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.
基金supported by the Guangdong Basic and Applied Basic Research Foundation No.2021A1515110958National Natural Science Foundation of China No.62202215+1 种基金SYLU introduced high-level talents scientific research support plan,Chongqing University Innovation Research Group(CXQT21019)Chongqing Talents Project(CQYC201903048)。
文摘In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.
文摘According to the characteristic of maneuvering targets tracking system, adaptive track predicting control is proposed from the point of predicting the motion track of the maneuvering target. For this method, least mean square(LMS) adaptive filter is applied to estimate the future track of the target. The structure of this filter is simple and the calculation amount is small. It is therefore suitable to being used in real-time control system. Testing results have proved that the control method can improve the tracking precision for maneuvering targets obviously.
文摘A kalman filter in the spherical-rectangular coordinate system to track a maneuvering target is introduced. A dynamic model with extended state vector is proposed in this paper to improve the state estimation (i.e. position, velocity and acceleration) even the sensor data(i.e. range, azimuth angle and elevation angle ) is color contaminated. The Kalman filter equations are decoupled by proper coordinate transformation and using filter gain rotation algorithm. Monto Carlo simulation is performed for different kinds of target trajectories(with the same measurement noise) and the root mean square values of estimation errors are computed. Results show that there is significant improvement in tracking capability over the methods discussed by other researchers.
基金supported by the Science and Technology Innovation Program of Hunan Province(2021RC3078)。
文摘In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.
基金Project supported by the National Natural Science Foundation of China(No.61273079)the State Key Laboratory of Industrial Control Technology(Nos.ICT1206 and ICT1207)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA06020300)the Key Laboratory of Wireless Sensor Network & Communication of Chinese Academy of Sciences (No.2011001)
文摘Target tracking is a typical and important application of wireless sensor networks(WSNs).Existing target tracking protocols focus mainly on energy efficiency,and little effort has been put into network management and real-time data routing,which are also very important issues for target tracking.In this paper,we propose a scalable cluster-based target tracking framework,namely the hierarchical prediction strategy(HPS),for energyefficient and real-time target tracking in large-scale WSNs.HPS organizes sensor nodes into clusters by using suitable clustering protocols which are beneficial for network management and data routing.As a target moves in the network,cluster heads predict the target trajectory using Kalman filter and selectively activate the next round of sensors in advance to keep on tracking the target.The estimated locations of the target are routed to the base station via the backbone composed of the cluster heads.A soft handoff algorithm is proposed in HPS to guarantee smooth tracking of the target when the target moves from one cluster to another.Under the framework of HPS,we design and implement an energy-efficient target tracking system,HierTrack,which consists of 36 sensor motes,a sink node,and a base station.Both simulation and experimental results show the efficiency of our system.
文摘In wireless communication environment, the time-varying channel and angular spreads caused by multipath fading and the mobility of Mobile Stations (MS) degrade the performance of the conventional Direction-Of-Arrival (DOA) tracking algorithms. On the other hand, although the DOA estimation methods based on the Maximum Likelihood (ML) principle have higher resolution than the beamforming and the subspace based methods, prohibitively heavy computation limits their practical applications. This letter first proposes a new suboptimal DOA estimation algorithm that combines the advantages of the lower complexity of subspace algorithm and the high accuracy of ML based algo- rithms, and then proposes a Kalman filtering based tracking algorithm to model the dynamic property of directional changes for mobile terminals in such a way that the association between the estimates made at different time points is maintained. At each stage during tracking process, the current suboptimal estimates of DOA are treated as measurements, predicted and updated via a Kalman state equation, hence adaptive tracking of moving MS can be carried out without the need to perform unduly heavy computations. Computer simulation results show that this proposed algorithm has better per- formance of DOA estimation and tracking of MS than the conventional ML or subspace based algo- rithms in terms of accuracy and robustness.
文摘Target tracking using wireless sensor networks offers multiple challenges because it usually involves intensive computation and requires accurate methods for tracking and energy consumption. Above all, scalability, energy optimization, efficiency, and overhead reduction are some among the key tasks for any protocol designed to perform target tracking using large scale sensor networks. Border surveillance systems, on the other side, need to report border crossings in a real time manner. They should provide large coverage, lower energy consumption, real time crossing detection, and use efficient tools to report crossing information. In this paper, we present a scheme, called Border Cooperative and Predictive Tracking protocol (BCTP), capable of energyaware surveillance and continuous tracking of objects and individuals’ crossing a country border and anticipating target motion within a thick strip along the border and estimating the target exit zone and time.
文摘To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.
基金This study was supported by the National Natural Science Foundation of China(No.62001506).
文摘This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and subsequently transmits the raw observation data to the fusion center,which formulates a centralized tracking network structure.In order to establish a practical blanket jamming environment,we suppose that each target carries the self-defense jammer which automatically implements blanket jamming to the radar nodes that exceed the preset interception probability.Subsequently,the Predicted Conditional Cramer-Rao Lower Bound(PC-CRLB)is derived and utilized as the tracking accuracy criterion.Aimed at ensuring both the tracking performance and the Low Probability of Intercept(LPI)performance,the resource-saving scheduling model is formulated to minimize the transmit power consumption while meeting the requirements of tracking accuracy.Finally,the Modified Zoutendijk Method Of Feasible Directions(MZMFD)-based two-stage solution technique is adopted to solve the formulated non-convex optimization model.Simulation results show the effectiveness of the proposed JRNSPA scheme.