期刊文献+
共找到3,046篇文章
< 1 2 153 >
每页显示 20 50 100
Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer
1
作者 Heng Zhang Chao Su +2 位作者 Xiaohu Chen Zhizhong Song Weijie Zhan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2977-3000,共24页
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th... Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location. 展开更多
关键词 Conjugate heat transfer temperature field mass concrete creep stress
下载PDF
Temperature and stress fields in electron beam welded Ti-15-3 alloy to 304 stainless steel joint with copper interlayer sheet 被引量:9
2
作者 张秉刚 王廷 +2 位作者 段潇辉 陈国庆 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期398-403,共6页
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro... Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel. 展开更多
关键词 Ti-15-3 alloy 304 stainless steel electron beam welding temperature field residual stress
下载PDF
Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll During Hot Strip Rolling 被引量:13
3
作者 LI Chang-sheng YU Hai-liang DENG Guan-yu LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第5期18-21,共4页
Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll... Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling. 展开更多
关键词 hot strip mill ROLL temperature field thermal stress finite element method
下载PDF
COUPLED NUMERICAL SIMULATION ON COLD ROLLER'S TEMPERATURE FIFLD-PHASE TRANSFORMATION - STRESS FIELD DURING ITS QUENCHING PSOCESS 被引量:14
4
作者 J. F. Gu J. S. Pan M. J. Hu and F. F. Shen (School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期254-262,共9页
Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short ti... Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given. 展开更多
关键词 quenching phase transformation temperature field stress field finite element method (FEM) numerical simulation
下载PDF
Influence of temperature and strain rate on flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys 被引量:11
5
作者 F.BERGE L.KRüGER +1 位作者 H.OUAZIZ C.ULLRICH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期1-13,共13页
The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery,... The effects of temperature and strain rate on the flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys were investigated under uniaxial tension. At high temperatures, dynamic recovery, continuous dynamic recrystallization, grain boundary sliding and the activation of additional slip systems lead to an improvement of the ductility of the alloys. The elongation to failure is nearly independent of the strain rate between 473 and 523 K at 10-2 s-1 and 10-1 s-1, which is related to the strain rate dependence of the critical resolved shear stress(CRSS) for nonbasal slip. Despite the high temperature, twins are even observed at 573 K and 10-3 s-1 because they have a low CRSS. 展开更多
关键词 AZ31 magnesium alloy twin-roll casting strain rate temperature dynamic recrystallization flow stress
下载PDF
Finite element analysis of temperature and stress fields during selective laser melting process of Al−Mg−Sc−Zr alloy 被引量:5
6
作者 Ru-long MA Chao-qun PENG +4 位作者 Zhi-yong CAI Ri-chu WANG Zhao-hui ZHOU Xiao-geng LI Xuan-yang CAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期2922-2938,共17页
A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedepe... A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm. 展开更多
关键词 aluminum−magnesium alloy Al−Mg−Sc−Zr alloy selective laser melting finite element analysis temperature field stress field
下载PDF
Numerical Simulation of Temperature and Stress Fields of Ti-Alloy Thin-well Barrel during Quenching Process 被引量:3
7
作者 LIYan-zeng YANMu-fu WUKun 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期769-771,共3页
The mathematical models have been established to describe the temperature and stress profiles in T16A14V cylinder during quenching. The residual stress and deformation of the workpiece can be predicted precisely based... The mathematical models have been established to describe the temperature and stress profiles in T16A14V cylinder during quenching. The residual stress and deformation of the workpiece can be predicted precisely based on ANSYS software. The simulated results show that the temperature of the divided element decreases faster at the edge than that at the internal of the workpiece during quenching from 1050 to 20°C. The largest temperature difference and dimension change in diameter are about 90°C and -0.935%, respectively. The position of largest tensile stress occurs around the edge of the cylinder. 展开更多
关键词 FEM 温度场 应力场 数值模拟 淬火 钛合金
下载PDF
ISOCHRONOUS STRESS-STRAIN CURVES OF LOW ALLOY STEEL CROSS-WELD-SPECIMEN AT HIGH TEMPERATURE 被引量:4
8
作者 C.W.Ma F.Z.Xuan +1 位作者 Z.D.Wang S.T.Tu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期612-617,共6页
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ... In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal. 展开更多
关键词 isochronous stress-strain curve creep deformation high temperature welded joint low alloy steel
下载PDF
Analysis on high-temperature oxidation and growth stress of iron-based alloy using phase field method 被引量:1
9
作者 杨帆 刘彬 方岱宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期757-764,共8页
High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been... High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments. 展开更多
关键词 high-temperature OXIDATION phase field method growth stress
下载PDF
Experimental study on stress-strain-temperature models for structural steel 被引量:1
10
作者 杨秀英 赵金城 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期6-10,共5页
For the research on steel structure in fire,it is very important to determine the properties of structural steel at elevated temperature.Up to now,the high-temperature properties of material is believed to be related ... For the research on steel structure in fire,it is very important to determine the properties of structural steel at elevated temperature.Up to now,the high-temperature properties of material is believed to be related to only temperature state,which is not precise enough to simulate the behavior of steel structures under different combinations of heating,cooling,loading,and unloading.To analyze the influence of the temperature-load history on the steel properties,a series of tests were carried out under different temperature-load paths about steel Q235,which is widely used in steel structures in China.In this paper,the method to set the temperature-load paths was introduced;the variety regulation of steel properties changing with temperature was analyzed under different paths;according to experimental results,the formulas of elastic modulus and yield strength at elevated temperature were fitted,and the stress-strain-temperature 3D relationships of structural steel under different paths were presented. 展开更多
关键词 structure steel high-temperature material test temperature-load history stress-strain-temperature relationship
下载PDF
SIMULATION OF TEMPERATURE AND THERMAL STRESS FIELD IN LASER MILLING PROCESSING
11
作者 G.F.Yuan C.S.Ge X.Y.Zeng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期43-46,共4页
The physical model of temperature field and thermal stress field are established in this paper, on which the numerical simulation with the assuming physical and laser milling parameters have been finished. The laser m... The physical model of temperature field and thermal stress field are established in this paper, on which the numerical simulation with the assuming physical and laser milling parameters have been finished. The laser milling process can be explained. 展开更多
关键词 laser milling temperature field thermal stress field SIMULATION
下载PDF
Finite element analysis on temperature field and residual stress of welding assembly for I-beam and end-plate
12
作者 贾栗 赵永生 +1 位作者 邹增大 邹勇料 《China Welding》 EI CAS 2013年第1期16-20,共5页
Based on full scale model of 1-beam and end-plate welding assembly with medium plate, welding temperature field and residual stress were simulated, infrared thermometers were employed to measure the real-time temperat... Based on full scale model of 1-beam and end-plate welding assembly with medium plate, welding temperature field and residual stress were simulated, infrared thermometers were employed to measure the real-time temperature Jbr verification purposes. Results show that the measured thermal cycle curves match well with the simulation result. Simulation results of welding residual stress indicate that the values of longitudinal and transverse stress on the upper surface of the plate are higher than the normal stress; higher tensile stresses exist at the end of the web weld toes and in the central area of the flange weld toes. The dangerous zones are located at the central areas of weld toes of the flange welds and near weld toes of the web welds. 展开更多
关键词 I-beam and end-plate welding assembly temperature field residual stress finite element analysis
下载PDF
Simulation Analysis on Temperature Field and Temperature Stress of Flexible Pavement in Cold Areas
13
作者 Wanzhu Zhen Zihe Li 《Journal of Applied Mathematics and Physics》 2021年第4期606-616,共11页
In order to ensure the service life of pavement in cold areas, this paper simulates the temperature field and stress field of pavement at high temperature of 60<span style="white-space:nowrap;">&#7... In order to ensure the service life of pavement in cold areas, this paper simulates the temperature field and stress field of pavement at high temperature of 60<span style="white-space:nowrap;">&#730;C</span> and low temperature of -30<span style="white-space:nowrap;">&#730;C</span> based on ANSYS software, and analyzes the changing trend of temperature of each layer with time and the temperature stress caused by it using the time-incremental finite element method. The results show that when the temperature is higher than 0&#730;C, the temperature between layers of the structure and the surface temperature shows an increasing trend. On the contrary, when the temperature is lower than 0<span style="white-space:normal;">&#730;C</span>, it shows a decreasing trend. The more drastic the temperature change is, the greater the temperature stress of the pavement will be, which is easy to cause road structure diseases. When the temperature difference of pavement reaches 90<span style="white-space:nowrap;">&#730;C</span>, the change of temperature stress between layers of road structure has a significant effect on the daily evolution of pavement. 展开更多
关键词 temperature field stress PAVEMENT
下载PDF
Residual elastic stress strain field and geometrically necessary dislocation density distribution around nano-indentation in TA15 titanium alloy 被引量:7
14
作者 何东 朱景川 +3 位作者 来忠红 刘勇 杨夏炜 农智升 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期7-13,共7页
Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri... Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density. 展开更多
关键词 nano-hardness stress strain fields geometrically necessary dislocation NANOINDENTATION electron backscatter diffraction TA15 titanium alloy
下载PDF
Modeling in SolidWorks and analysis of temperature and thermal stress during construction of intake tower 被引量:3
15
作者 Hong-yang ZHANG Tong-chun LI Zong-kun LI 《Water Science and Engineering》 EI CAS 2009年第1期95-102,共8页
With a focus on the intake tower of the Yanshan Reservoir, this paper discusses the method of modeling in the 3D CAD software SolidWorks and the interface processing between SolidWorks and the ANSYS code, which decrea... With a focus on the intake tower of the Yanshan Reservoir, this paper discusses the method of modeling in the 3D CAD software SolidWorks and the interface processing between SolidWorks and the ANSYS code, which decreases the difficulty in modeling complicated models in ANSYS. In view of the function of the birth-death element and secondary development with APDL (ANSYS parametric design language), a simulation analysis of the temperature field and thermal stress during the construction period of the intake tower was conveniently conducted. The results show that the temperature rise is about 29.934 ℃ over 3 or 4 days. The temperature differences between any two points are less than 24 ℃. The thermal stress increases with the temperature difference and reaches its maximum of 1.68 MPa at the interface between two concrete layers. 展开更多
关键词 SOLIDWORKS ANSYS APDL birth-death element temperature field thermal stress
下载PDF
Formulation and procedure for in situ stress back-analysis from borehole strain changes measured during nearby underground excavation
16
作者 Cui Lin D.H.Steve Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1931-1943,共13页
Estimation of in situ stresses based on back-analysis of measured stress changes and displacements has become an alternative to the direct stress measurement methods.In order to help users conduct own measurement and ... Estimation of in situ stresses based on back-analysis of measured stress changes and displacements has become an alternative to the direct stress measurement methods.In order to help users conduct own measurement and analysis,this paper presents in detail a field stress back-analysis approach directly from borehole strain changes measured during nearby underground excavation.Essential formulations in major steps and the procedure for the entire analysis process are provided to allow users to follow.The instrument for borehole strain change measurement can be the CSIR or CSIRO stress cells and other borehole strain cells that can measure strains on borehole walls.Strain changes corresponding to the stress changes at a borehole location are calculated in borehole environment.The stress changes due to nearby excavation can be calculated by an analytical model for a single circular opening and simulated by a numerical model for non-circular and multiple openings.These models are based on isotropic,homogeneous and linear elastic assumptions.The analysis of borehole strain changes is accomplished by multiple linear regression based on error minimization and an integrated process provides the best-fit solution directly to the in situ stresses.A statistical technique is adopted for screening outliers in the measurement data,checking measurement compatibility and evaluating the reliability of analysis results.An application example is included to demonstrate the practical application and the analysis procedure. 展开更多
关键词 In situ stress field BACK-ANALYSIS Borehole strain change Multiple linear regression Underground excavation Data compatibility Result reliability
下载PDF
Plastic Flow Modeling of Ti-5 Al-2 Sn-2 Zr-4 Mo-4 Cr Alloy at Elevated Temperatures and High Strain Rates 被引量:1
17
作者 王宝林 AI Xing +1 位作者 刘战强 LIU Jigang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期611-616,共6页
The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compr... The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compression tests were carried out with Instron 8874 test machine, while dynamic compression tests were performed with the split Hopkinson pressure bar (SHPB) which was installed with heating device and synchro- assembly system. The dynamic mechanical behaviors tests of TC17 were carded out from room temperature to 800 ℃ at intervals of 200 ℃ and at high sWain rates (5 500-1 9200 s-l). The stress-strain curves considering temperature-sWain rate coupling actions were obtained. The Johnson-Cook constitutive model was developed through data fitting of the stress-sWain curves. The material constants in the developed constitutive model can be determined using isothermal and adiabatic stress-strain curves at different strain rates. The Johnson-Cook constitutive model provided satisfied prediction of the plastic flow stress for TC17 alloy. 展开更多
关键词 Ti-5A1-2Sn-2Zr-4Mo-4Cr SHPB stress-strain curve high temperature high strain rate dynamic constitutive relationship
原文传递
Constitutive model depending upon temperature and strain rate of carbon constructional quality steels
18
作者 杨柳 罗迎社 《Journal of Central South University》 SCIE EI CAS 2008年第S1期43-46,共4页
The basic factors relating to the rheological stress in the constitutive equations were introduced.Carbon constructional quality steels were regarded as a kind of elastic-viscoplastic materials under high temperature ... The basic factors relating to the rheological stress in the constitutive equations were introduced.Carbon constructional quality steels were regarded as a kind of elastic-viscoplastic materials under high temperature and the elastic-viscoplastic constitutive models were summarized.A series of tension experiments under the same temperature and different strain rates,and the same strain rate and different temperatures were done on 20 steel,35 steel and 45 steel.52 groups of rheological stress-strain curves were obtained.The experimental results were analyzed theoretically.The rheological stress constitutive models of carbon steels were built combining the strong points of the Perzyna model and Johnson-Cook model.Comparing the calculation results conducted from the model with the experiment results,the results proves that the model can reflect the temperature effect and strain rate effect of carbon constructional quality steels better. 展开更多
关键词 RHEOLOGICAL stress strain RATE EFFECT temperature EFFECT CONSTITUTIVE model
下载PDF
AN IMPROVED HOLOGRAPHIC METHOD FOR THE DETERMINATION OF TEMPERATURE DISTRIBUTIONS AND THERMAL STRESSES
19
作者 何小元 徐铸 王澄非 《Journal of Southeast University(English Edition)》 EI CAS 1995年第2期116-122,共7页
In this paper, a new method for getting the temperature and thestress fields is proposed. By this method, three pieces of information can berecorded in two holograms at the same time , when a two-dimensional photoe-la... In this paper, a new method for getting the temperature and thestress fields is proposed. By this method, three pieces of information can berecorded in two holograms at the same time , when a two-dimensional photoe-lastic model is subjected to thermal loa 展开更多
关键词 POLARIZATION HOLOGRAPHY THERMAL stresses temperature field
下载PDF
EFFECT OF THE POISSON RATIO ON THE PERFECTLY PLASTIC STRESS FIELD AT A STATIONARY PLANE-STRAIN CRACK TIP
20
作者 林拜松 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第3期289-295,共7页
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of ? only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this pape... Under the condition that all the perfectly plastic stress components at a crack tip are the functions of ? only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this paper, we derive the generally analytical expressions of perfectly plastic stress field at a stationary plane-strain crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the stationary tips of Mode I, Mode II and Mixed-Mode I-II plane-strain cracks are obtained. These analytical expressions contain Poisson ratio. 展开更多
关键词 Poisson ratio PLANE-strain stationary crack-tip perfectly-plastic stress fields generally analytical expression
下载PDF
上一页 1 2 153 下一页 到第
使用帮助 返回顶部