期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Application Research of Temperature Forecasts on Elman Neural Network
1
作者 王芳 涂春丽 勾永尧 《Agricultural Science & Technology》 CAS 2011年第11期1680-1681,1686,共3页
[Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing durin... [Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing during 1951-2010, the Elman artificial neural network model was applied to predict the temperature. [Result] This simulation result suggested that the relative error was small and can have a good simulation to the future temperature changes. [Conclusion] The prediction result can guide agricultural production and further apply to the field of pricing the weather derivative products. 展开更多
关键词 temperature forecasts Elman neural network Agricultural production
下载PDF
Application of Kalman Filter Method in the Forecast of Temperature in Nanchang
2
作者 Feifei WU Xiaoyou LONG +1 位作者 Chuanshi TANG Landi ZHONG 《Meteorological and Environmental Research》 2024年第4期32-35,共4页
A temperature forecasting model was created firstly based on the Kalman filter method,and then used to predict the highest and lowest temperature in Nanchang station from October 27 to November 1,2017.Finally,accordin... A temperature forecasting model was created firstly based on the Kalman filter method,and then used to predict the highest and lowest temperature in Nanchang station from October 27 to November 1,2017.Finally,according to the empirical forecasting method,guidance forecasts were established for the northern,central,and southern parts of Nanchang City.After inspection,it was found that the temperature prediction model established based on the Kalman filter method in Nanchang station had good prediction performance,and especially in the 24-hour forecast,it had advantages over the European Center.The accuracy of low temperature forecast was better than that of high temperature forecast. 展开更多
关键词 Kalman filter method temperature forecast Nanchang City
下载PDF
Bias correction of sea surface temperature retrospective forecasts in the South China Sea 被引量:2
3
作者 Guijun Han Jianfeng Zhou +7 位作者 Qi Shao Wei Li Chaoliang Li Xiaobo Wu Lige Cao Haowen Wu Yundong Li Gongfu Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第2期41-50,共10页
Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have bee... Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data. 展开更多
关键词 sea surface temperature retrospective forecasts bias correction backpropagation neural network empirical orthogonal function analysis South China Sea
下载PDF
The 3-Hour-Interval Prediction of Ground-Level Temperature in South Korea Using Dynamic Linear Models 被引量:3
4
作者 Keon-Tae SOHN Deuk-KyunRHA Young-KyungSEO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第4期575-582,共8页
The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea (38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical... The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea (38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical model forecasts. Numerical model forecasts and observations are used as input values of the DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecasts with RMSE and bias, the DLM is useful to improve the accuracy of prediction. 展开更多
关键词 temperature forecasting systematic error dynamic linear model
下载PDF
ConvLSTM Based Temperature Forecast Modification Model for North China 被引量:1
5
作者 GENG Huan-tong HU Zhong-yan WANG Tian-lei 《Journal of Tropical Meteorology》 SCIE 2022年第4期405-412,共8页
The correction of model forecast is an important step in evaluating weather forecast results.In recent years,post-processing models based on deep learning have become prominent.In this paper,a deep learning model name... The correction of model forecast is an important step in evaluating weather forecast results.In recent years,post-processing models based on deep learning have become prominent.In this paper,a deep learning model named EDConvLSTM based on encoder-decoder structure and ConvLSTM is developed,which appears to be able to effectively correct numerical weather forecasts.Compared with traditional post-processing methods and convolutional neural networks,ED-ConvLSTM has strong collaborative extraction ability to effectively extract the temporal and spatial features of numerical weather forecasts and fit the complex nonlinear relationship between forecast field and observation field.In this paper,the post-processing method of ED-ConvLSTM for 2 m temperature prediction is tested using The International Grand Global Ensemble dataset and ERA5-Land data from the European Centre for Medium-Range Weather Forecasts(ECMWF).Root mean square error and temperature prediction accuracy are used as evaluation indexes to compare ED-ConvLSTM with the method of model output statistics,convolutional neural network postprocessing methods,and the original prediction by the ECMWF.The results show that the correction effect of EDConvLSTM is better than that of the other two postprocessing methods in terms of the two indexes,especially in the long forecast time. 展开更多
关键词 temperature forecast POST-PROCESSING numerical weather prediction encoder-decoder model ConvLSTM
下载PDF
IMPACT OF SUMMER WARMING ON DYNAMICS-STATISTICS-COMBINED METHOD TO PREDICT THE SUMMER TEMPERATURE IN CHINA
6
作者 苏海晶 乔少博 +1 位作者 杨杰 王晓娟 《Journal of Tropical Meteorology》 SCIE 2017年第4期440-449,共10页
Based on NCEP/NCAR daily reanalysis data, climate trend rate and other methods are used to quantitatively analyze the change trend of China's summer observed temperature in 1983—2012. Moreover, a dynamics-statist... Based on NCEP/NCAR daily reanalysis data, climate trend rate and other methods are used to quantitatively analyze the change trend of China's summer observed temperature in 1983—2012. Moreover, a dynamics-statistics-combined seasonal forecast method with optimal multi-factor portfolio is applied to analyze the impact of this trend on summer temperature forecast. The results show that: in the three decades, the summer temperature shows a clear upward trend under the condition of global warming, especially over South China, East China, Northeast China and Xinjiang Region, and the trend rate of national average summer temperature was 0.27℃ per decade. However, it is found that the current business model forecast(Coupled Global Climate Model) of National Climate Centre is unable to forecast summer warming trends in China, so that the post-processing forecast effect of dynamics-statistics-combined method is relatively poor. In this study, observed temperatures are processed first by removing linear fitting trend, and then adding it after forecast to offset the deficiency of model forecast indirectly. After test, ACC average value in the latest decade was 0.44 through dynamics-statistics-combined independent sample return forecast. The temporal correlation(TCC) between forecast and observed temperature was significantly improved compared with direct forecast results in most regions, and effectively improved the skill of the dynamics-statistics-combined forecast method in seasonal temperature forecast. 展开更多
关键词 dynamics-statistics-combined global warming temperature forecast model error correction
下载PDF
Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas 被引量:5
7
作者 WANG Guansuo ZHAO Chang +2 位作者 XU Jiangling QIAO Fangli XIA Changshui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第2期19-28,共10页
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin... An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean. 展开更多
关键词 operational forecast sea surface temperature mixed layer depth lead time subsurface temperature ocean circulation-surface wave coupled forecast system China's seas
下载PDF
An ANN-Based Short-Term Temperature Forecast Model for Mass Concrete Cooling Control 被引量:1
8
作者 Hide Author's Information Ming Li Peng Lin +3 位作者 Daoxiang Chen Zichang Li Ke Liu Yaosheng Tan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第3期511-524,共14页
Concrete temperature control during dam construction(e.g.,concrete placement and curing)is important for cracking prevention.In this study,a short-term temperature forecast model for mass concrete cooling control is d... Concrete temperature control during dam construction(e.g.,concrete placement and curing)is important for cracking prevention.In this study,a short-term temperature forecast model for mass concrete cooling control is developed using artificial neural networks(ANN).The development workflow for the forecast model consists of data integration,data preprocessing,model construction,and model application.More than 80000 monitoring samples are collected by the developed intelligent cooling control system in the Baihetan Arch Dam,which is the largest hydropower project in the world under construction.Machine learning algorithms,including ANN,support vector machines,long short-term memory networks,and decision tree structures,are compared in temperature prediction,and the ANN is determined to be the best for the forecast model.Furthermore,an ANN framework with two hidden layers is determined to forecast concrete temperature at intervals of one day.The root mean square error of the forecast precision is 0.15∘C on average.The application on concrete blocks verifies that the developed ANN-based forecast model can be used for intelligent cooling control during mass concrete construction. 展开更多
关键词 artificial neural networks(ANN) predictive modeling temperature forecast mass concrete cooling control
原文传递
Aerosol as a critical factor causing forecast biases of air temperature in global numerical weather prediction models 被引量:3
9
作者 Xin Huang Aijun Ding 《Science Bulletin》 SCIE EI CSCD 2021年第18期1917-1924,M0004,共9页
Weather prediction is essential to the daily life of human beings. Current numerical weather prediction models such as the Global Forecast System(GFS) are still subject to substantial forecast biases and rarely consid... Weather prediction is essential to the daily life of human beings. Current numerical weather prediction models such as the Global Forecast System(GFS) are still subject to substantial forecast biases and rarely consider the impact of atmospheric aerosol, despite the consensus that aerosol is one of the most important sources of uncertainty in the climate system. Here we demonstrate that atmospheric aerosol is one of the important drivers biasing daily temperature prediction. By comparing observations and the GFS prediction, we find that the monthly-averaged bias in the 24-h temperature forecast varies between ± 1.5 ℃ in regions influenced by atmospheric aerosol. The biases depend on the properties of aerosol, the underlying land surface, and aerosol–cloud interactions over oceans. It is also revealed that forecast errors are rapidly magnified over time in regions featuring high aerosol loadings. Our study provides direct ‘‘observational" evidence of aerosol’s impacts on daily weather forecast, and bridges the gaps between the weather forecast and climate science regarding the understanding of the impact of atmospheric aerosol. 展开更多
关键词 Weather prediction Atmospheric aerosol temperature forecast errors Aerosol-radiation interactions Aerosol-cloud interactions
原文传递
Regional Temperature Forecast for the Next Day in Hong Kong
10
作者 林邝泗莲 沈洁莹 邓树恩 《Acta meteorologica Sinica》 SCIE 2011年第6期725-733,共9页
For a century or so, the Hong Kong Observatory (HKO) has been providing temperature forecast for the whole of Hong Kong with the HKO Headquarters as the reference location. In recent decades, due to spreading of pop... For a century or so, the Hong Kong Observatory (HKO) has been providing temperature forecast for the whole of Hong Kong with the HKO Headquarters as the reference location. In recent decades, due to spreading of population from the main urban center to satellite towns, there is an increasing demand for regional temperature forecasts. To support such provision, the HKO has developed a regression model to provide objective guidance to forecasters in formulating forecasts of maximum and minimum temperatures for the next day at various locations in Hong Kong. In this paper, the regression model is presented, together with the assessment of its performance. Based on the verification of one year of forecasts, it is found that the root mean square errors (RMSEs) of maximum (minimum) temperature forecasts are from about 1.3 to 2.1 (1.1 to 1.4) degrees, respectively. The regression model is shown to have generally out-performed the operational regional spectral model then operated by HKO. Regional temperature forecast methods of other meteorological or research centers are also surveyed. Equipped with the regression model, the HKO has launched an online regional temperature forecast service for the next day in Hong Kong since March 2008. 展开更多
关键词 multiple linear regression model maximum/minimum temperature forecast root meansquare error Hong Kong
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部