The formation of the solar system has been studied since the 18th century and received a boost in 1995 with the discovery of the first exoplanet,51 Pegasi b.The investigations increased the number of confirmed planets...The formation of the solar system has been studied since the 18th century and received a boost in 1995 with the discovery of the first exoplanet,51 Pegasi b.The investigations increased the number of confirmed planets to about5400 to date.The possible internal structure and composition of these planets can be inferred from the relationship between planet mass and radius,M-R.We have analyzed the M-R relation of a selected sample of iron-rock and ice-gas planets using a fractal approach to their densities.The application of fractal theory is particularly useful to define the physical meaning of the proportionality constant and the exponent in an empirical M-R power law in exoplanets,but this does not necessarily mean that they have an internal fractal structure.The M-R relations based on this sample are M=(1.46±0.08)R^(2.6±0.2)for the rocky population(3.6≤ρ≤14.3 g cm^(-3)),with 1.5≤M≤39M_(⊕),and M=(0.27±0.04)R^(2.7±0.2)for ice-gas planets(0.3≤ρ≤2.1 g cm^(-3))with 5.1≤M≤639 M_(⊕)(or■2 M_(J))and orbital periods greater than 10 days.Both M-R relations have in their density range a great predictive power for the determination of the mass of exoplanets and even for the largest icy moons of the solar system.The average fractal dimension of these planets is D=2.6±0.1,indicating that these objects likely have a similar degree of heterogeneity in their densities and a nearly similar composition in each sample.The M-R diagram shows a"gap"between ice-gas and iron-rock planets.This gap is a direct consequence of the density range of these two samples.We empirically propose an upper mass limit of about 100 M_(⊕),so that an M-R relation for ice-gas planets in a narrow density range is defined by M∝R^(3).展开更多
The Closeby Habitable Exoplanet Survey(CHES) mission is proposed to discover habitable-zone Earth-like planets of nearby solar-type stars(~10 pc away from our solar system) via microarcsecond relative astrometry.The m...The Closeby Habitable Exoplanet Survey(CHES) mission is proposed to discover habitable-zone Earth-like planets of nearby solar-type stars(~10 pc away from our solar system) via microarcsecond relative astrometry.The major scientific objectives of CHES are:to search for Earth Twins or terrestrial planets in habitable zones orbiting100 FGK nearby stars;further to conduct a comprehensive survey and extensively characterize nearby planetary systems.The primary payload is a high-quality,low-distortion,high-stability telescope.The optical subsystem is a coaxial three-mirror anastigmat(TMA) with a 1.2 m-aperture,0°.44 × 0°.44 field of view and 500 nm-900 nm working wave band.The camera focal plane is composed of a mosaic of 81 scientific CMOS detectors each with4 k × 4 k pixels.The heterodyne laser interferometric calibration technology is employed to ensure microarcsecond level(1 μas) relative astrometry precision to meet the requirements for detection of Earth-like planets.The CHES satellite operates at the Sun-Earth L2 point and observes all the target stars for 5 yr.CHES will offer the first direct measurements of true masses and inclinations of Earth Twins and super-Earths orbiting our neighbor stars based on microarcsecond astrometry from space.This will definitely enhance our understanding of the formation of diverse nearby planetary systems and the emergence of other worlds for solar-type stars,and finally provide insights to the evolution of our own solar system.展开更多
A planetary atmosphere is the outer gas layer of a planet. Besides its scientific significance among the first and most accessible planetary layers observed from space, it is closely connected with planetary formation...A planetary atmosphere is the outer gas layer of a planet. Besides its scientific significance among the first and most accessible planetary layers observed from space, it is closely connected with planetary formation and evolution, surface and interior processes, and habitability of planets. Current theories of planetary atmospheres were primarily obtained through the studies of eight large planets, Pluto and three large moons(Io, Titan, and Triton) in the Solar System. Outside the Solar System, more than four thousand extrasolar planets(exoplanets) and two thousand brown dwarfs have been confirmed in our Galaxy, and their population is rapidly growing. The rich information from these exotic bodies offers a database to test, in a statistical sense, the fundamental theories of planetary climates. Here we review the current knowledge on atmospheres of exoplanets and brown dwarfs from recent observations and theories. This review highlights important regimes and statistical trends in an ensemble of atmospheres as an initial step towards fully characterizing diverse substellar atmospheres, that illustrates the underlying principles and critical problems.Insights are obtained through analysis of the dependence of atmospheric characteristics on basic planetary parameters. Dominant processes that influence atmospheric stability, energy transport, temperature, composition and flow pattern are discussed and elaborated with simple scaling laws. We dedicate this review to Dr. Adam P. Showman(1968–2020) in recognition of his fundamental contribution to the understanding of atmospheric dynamics on giant planets, exoplanets and brown dwarfs.展开更多
Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a ro- taring cylindrical ...Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a ro- taring cylindrical annulus, which simultaneously possesses slow precession. The same problem has been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincar6 number Po and the radius-height aspect ratio F. While in an annulus, there is another parameter, the inner-radius-height aspect ratio T, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction be- tween the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u111, followed by u113 or u112, always dominates the precessing flow when 0.001 ≤Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.展开更多
The Standards of Fundamental Astronomy(SOFA)is a service provided by the International Astronomical Union that offers algorithms and software for astronomical calculations,which was released in two versions for FORTRA...The Standards of Fundamental Astronomy(SOFA)is a service provided by the International Astronomical Union that offers algorithms and software for astronomical calculations,which was released in two versions for FORTRAN77 and ANSI C,respectively.In this work,we implement the Python package PyMsOfa for SOFA service by three ways:(1)a Python wrapper package based on a foreign function library for Python(ctypes),(2)a Python wrapper package with the foreign function interface for Python calling C code(cffi)and(3)a Python package directly written in pure Python codes from SOFA subroutines.The package PyMsOfa has fully implemented 247 functions of the original SOFA routines released on 2023 October 11.In addition,PyMsOfa is also extensively examined,which is exactly consistent with those test examples given by the original SOFA.This Python package can be suitable to not only the astrometric detection of habitable planets from the Closeby Habitable Exoplanet Survey mission,but also for the frontier themes of black holes and dark matter related to astrometric calculations and other fields.The source codes are available via http://pypi.org/project/PyMsOfa/and https://github.com/CHES2023/PyMsOfa.展开更多
The remnant magnetism in the crust of Martian southern highland is associated with the magnetic sources at an average depth of~32 km.In this work,we investigate the magnetization of Martian crust via 1-D parameterized...The remnant magnetism in the crust of Martian southern highland is associated with the magnetic sources at an average depth of~32 km.In this work,we investigate the magnetization of Martian crust via 1-D parameterized model for the stagnant-lid mantle convection.According to our model,the magnetization of Martian crust is likely to take place in the top-down manner during 4.1-3.7 Ga.To reproduce the average depth of magnetic sources below the southern highland,magnetite and Mg-ferrite are anticipated to be the magnetic carriers in the Martian crust,implying the serpentinisation therein.If magnetite is the only magnetic carrier in the Martian crust,the early climate must be warm enough to maintain a surface temperature of 300 K during 4.1-3.7 Ga at least.Such a warm climate is more likely to be a regional phenomenon associated with the serpentinisation in the crust of the southern highland or the hot ejecta of Borialis impact depositing on the southern hemisphere.展开更多
Understanding the internal structure of Venus promotes the exploration of the evolutionary history of this planet.However,the existing research concerning the internal structure of Venus has not used any inversion met...Understanding the internal structure of Venus promotes the exploration of the evolutionary history of this planet.However,the existing research concerning the internal structure of Venus has not used any inversion methods.In this work we employed an inversion method to determine the internal structure of Venus using observational or hypothetical geodetic data;these data include mass,mean radius,mean moment of inertia and second degree tidal Love number k2.To determine the core state of Venus,we created two models of Venus,an isotropic 3-layer model with entire liquid core and an isotropic 4-layer model with liquid outer core and a solid inner core,assuming that the interior of Venus is spherically symmetric and in hydrostatic equilibrium.A series of the sensitivity analysis of interior structure parameters to the geodetic data considered in here shows that not all of the parameters can be constrained by the geodetic data from Venus.On this basis,a Markov Chain Monte Carlo algorithm was used to determine the posterior probability distribution and the optimal values of the internal structure parameters of Venus with the geodetic data.We found that the 3-layer model is more credible than the 4-layer model via currently geodetic data.For the assumption of the 3-layer model with the k2=0.295±0.066,I/MR^2=0.33±0.0165,andρ=5242.7±2.6 kg m^-3,the liquid iron-rich core of Venus has a radius of 3294+215-261km,which suggests a larger core than previous research has indicated.The average density of the mantle and liquid core of Venus are 4101+325-375and 11885+955-1242kg m~^-3,respectively.展开更多
The Mare Moscoviense is an astonishing rare flatland multi-ring basin and one of the recognizable mare regions on the Moon's farside.The mineralogical,chronological,topographical and morphological studies of the m...The Mare Moscoviense is an astonishing rare flatland multi-ring basin and one of the recognizable mare regions on the Moon's farside.The mineralogical,chronological,topographical and morphological studies of the maria surface of the Moon provide a primary understanding of the origin and evolution of the mare provinces.In this study,the Chandrayaan-1 M^(3)data have been employed to prepare optical maturity index,FeO and TiO^(2)concentration,and standard band ratio map to detect the mafic indexes like olivine and pyroxene minerals.The crater size frequency distribution method has been applied to LROC WAC data to obtain the absolute model ages of the Moscoviense basin.The four geological unit ages were observed as 3.57 Ga(U-2),3.65 Ga(U-1),3.8 Ga(U-3)and 3.92 Ga(U-4),which could have been formed between the Imbrian and Nectarian epochs.The M^(3)imaging and reflectance spectral parameters were used to reveal the minerals like pyroxene,olivine,ilmenite,plagioclase,orthopyroxene-olivine-spinel lithology,and olivine-pyroxene mixtures present in the gabbroic basalt,anorthositic and massive ilmenite rocks,and validated with the existing database.The results show that the Moscoviense basin is dominated by intermediate TiO^(2)basalts that derived from olivine-ilmenite-pyroxene cumulate depths ranging from 200 to 500 km between 3.5 Ga and 3.6 Ga.展开更多
A so-called megaregolith layer that is considered to be produced by continuous impacts in Mercury’s early stages is integrated into the thermal evolution models of Mercury to study its influence on the thermal evolut...A so-called megaregolith layer that is considered to be produced by continuous impacts in Mercury’s early stages is integrated into the thermal evolution models of Mercury to study its influence on the thermal evolution of Mercury’s silicate shell.This research first implements a one-dimensional parametric global thermal evolution model.Our results indicate that megaregolith directly affects the thermal evolution of Mercury’s silicate shell by virtue of its good insulation performance.The way megaregolith exerts its influence is by prolonging the process of partial melting and reducing the heat loss,resulting in a thicker crust and thinner stagnant lid.As for the deep parts of the silicate shell,it is suggested that more energy is taken away from the mantle due to the longer partial melting,leading to lower temperatures below the crust compared with the case in the absence of megaregolith,which further helps to advance the formation time of the inner core and promote its final size.In addition,we also carry out a simplified two-dimensional mantle convection simulation as a supplement to the one-dimensional model.The two-dimensional simulation depicts a typical mantle plume fractional melting scenario.Our calculations indicate that megaregolith may be key to the long-term volcanic activities on Mercury.As far as the megaregolith itself is concerned,the thermal structure of this particular layer is more sensitive to thermal conductivity,suggesting that for such a highly fragmented structure,the thermal conductivity coefficient plays a key role in its evolution.Our work emphasizes the importance of megaregolith to the evolution of Mercury.展开更多
Electron density profiles of Venus' ionosphere are inverted from the Venus Express (VEX) one-way open-loop radio occultation experiments carried out by the Shanghai 25 m antenna from November 2011 to January 2012 a...Electron density profiles of Venus' ionosphere are inverted from the Venus Express (VEX) one-way open-loop radio occultation experiments carried out by the Shanghai 25 m antenna from November 2011 to January 2012 at solar maximum conditions and by the New Norcia 35 m antenna from August 2006 to June 2008 at solar intermediate conditions. The electron density profile (from 110 km to 400 km), retrieved from the X-band egress observation at the Shanghai station, shows a single peak near 147 km with a peak density of about 2 × 10^4 cm-3 at a solar zenith angle of 94° As a comparison, the VEX radio science (VeRa) observations at the New Norcia station were also examined, including S- and X-band and dual-frequency data in the ingress mode. The results show that the electron density profiles retrieved from the S-band data are more analogous to the dual-frequency data in terms of the profile shape, compared with the X-band data. Generally, the S-band results slightly underestimate the magnitude of the peak density, while the X-band results overestimate it. The discrepancy in the X-band profile is probably due to the relatively larger unmod- eled orbital errors. It is also expected that the ionopause height is sensitive to the solar wind dynamical pressure in high and intermediate solar activities, usually in the range of 200-1000 km on the dayside and much higher on the nightside. Structural variations ("bulges" and fluctuations) can be found in the electron density profiles during intermediate solar activity, which may be caused by the interaction of the solar wind with the ionosphere. Considerable ionizations can be observed in Venus' nightside ionosphere, which are unexpected for the Martian nightside ionosphere in most cases.展开更多
Impact craters are formed due to the high-speed collisions between small to medium-sized celestial bodies.Impact is the most significant driving force in the evolution of celestial bodies,and the impact craters provid...Impact craters are formed due to the high-speed collisions between small to medium-sized celestial bodies.Impact is the most significant driving force in the evolution of celestial bodies,and the impact craters provide crucial insights into the formation,evolution,and impact history of celestial bodies.In this paper,we present a detailed review of the characteristics of impact craters,impact crater remote sensing data,recognition algorithms,and applications related to impact craters.We first provide a detailed description of the geometric texture,illumination,and morphology characteristics observed in remote sensing data of craters.Then we summarize the remote sensing data and cataloging databases for the four terrestrial planets(i.e.,the Moon,Mars,Mercury,and Venus),as well as the impact craters on Ceres.Subsequently,we study the advancement achieved in the traditional methods,machine learning methods,and deep learning methods applied to the classification,segmentation,and recognition of impact craters.Furthermore,based on the analysis results,we discuss the existing challenges in impact crater recognition and suggest some solutions.Finally,we explore the implementation of impact crater detection algorithms and provide a forward-looking perspective.展开更多
Volcanic activity is the main process for heat-material exchange and circulation for differentiated planets. All terrestrial planets in the Solar System, the Moon, the satellites of giant planets, and the dwarf planet...Volcanic activity is the main process for heat-material exchange and circulation for differentiated planets. All terrestrial planets in the Solar System, the Moon, the satellites of giant planets, and the dwarf planets once experienced or are currently experiencing volcanic activities. This paper summarized the volcanism(main volcanic features and their formation) on the Moon, Mars, Venus, and Mercury in the inner Solar System, volcanism and cryovolcanism on satellites(Io, Europa,Enceladus) of giant planets, as well as volcanism on dwarf planets including Cere in the main asteroid belt and Pluto in the Kuiper belt. This work shows volcanism in the Solar System is driven by various factors, forming abundant volcanic landforms.It has significant meanings to compare volcanism happening on different planets using comparative planetology approaches for a better understanding of volcanism, the planetary habitability, and the information contained on the origin and evolution of planets in the Solar System.展开更多
文摘The formation of the solar system has been studied since the 18th century and received a boost in 1995 with the discovery of the first exoplanet,51 Pegasi b.The investigations increased the number of confirmed planets to about5400 to date.The possible internal structure and composition of these planets can be inferred from the relationship between planet mass and radius,M-R.We have analyzed the M-R relation of a selected sample of iron-rock and ice-gas planets using a fractal approach to their densities.The application of fractal theory is particularly useful to define the physical meaning of the proportionality constant and the exponent in an empirical M-R power law in exoplanets,but this does not necessarily mean that they have an internal fractal structure.The M-R relations based on this sample are M=(1.46±0.08)R^(2.6±0.2)for the rocky population(3.6≤ρ≤14.3 g cm^(-3)),with 1.5≤M≤39M_(⊕),and M=(0.27±0.04)R^(2.7±0.2)for ice-gas planets(0.3≤ρ≤2.1 g cm^(-3))with 5.1≤M≤639 M_(⊕)(or■2 M_(J))and orbital periods greater than 10 days.Both M-R relations have in their density range a great predictive power for the determination of the mass of exoplanets and even for the largest icy moons of the solar system.The average fractal dimension of these planets is D=2.6±0.1,indicating that these objects likely have a similar degree of heterogeneity in their densities and a nearly similar composition in each sample.The M-R diagram shows a"gap"between ice-gas and iron-rock planets.This gap is a direct consequence of the density range of these two samples.We empirically propose an upper mass limit of about 100 M_(⊕),so that an M-R relation for ice-gas planets in a narrow density range is defined by M∝R^(3).
基金financially supported by the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (Grant No. XDA 15020800)the National Natural Science Foundation of China (Grant Nos. 12033010, 41604152 and U1938111)Foundation of Minor Planets of the Purple Mountain Observatory and Youth Innovation Promotion Association CAS (Grant No. 2018178)。
文摘The Closeby Habitable Exoplanet Survey(CHES) mission is proposed to discover habitable-zone Earth-like planets of nearby solar-type stars(~10 pc away from our solar system) via microarcsecond relative astrometry.The major scientific objectives of CHES are:to search for Earth Twins or terrestrial planets in habitable zones orbiting100 FGK nearby stars;further to conduct a comprehensive survey and extensively characterize nearby planetary systems.The primary payload is a high-quality,low-distortion,high-stability telescope.The optical subsystem is a coaxial three-mirror anastigmat(TMA) with a 1.2 m-aperture,0°.44 × 0°.44 field of view and 500 nm-900 nm working wave band.The camera focal plane is composed of a mosaic of 81 scientific CMOS detectors each with4 k × 4 k pixels.The heterodyne laser interferometric calibration technology is employed to ensure microarcsecond level(1 μas) relative astrometry precision to meet the requirements for detection of Earth-like planets.The CHES satellite operates at the Sun-Earth L2 point and observes all the target stars for 5 yr.CHES will offer the first direct measurements of true masses and inclinations of Earth Twins and super-Earths orbiting our neighbor stars based on microarcsecond astrometry from space.This will definitely enhance our understanding of the formation of diverse nearby planetary systems and the emergence of other worlds for solar-type stars,and finally provide insights to the evolution of our own solar system.
文摘A planetary atmosphere is the outer gas layer of a planet. Besides its scientific significance among the first and most accessible planetary layers observed from space, it is closely connected with planetary formation and evolution, surface and interior processes, and habitability of planets. Current theories of planetary atmospheres were primarily obtained through the studies of eight large planets, Pluto and three large moons(Io, Titan, and Triton) in the Solar System. Outside the Solar System, more than four thousand extrasolar planets(exoplanets) and two thousand brown dwarfs have been confirmed in our Galaxy, and their population is rapidly growing. The rich information from these exotic bodies offers a database to test, in a statistical sense, the fundamental theories of planetary climates. Here we review the current knowledge on atmospheres of exoplanets and brown dwarfs from recent observations and theories. This review highlights important regimes and statistical trends in an ensemble of atmospheres as an initial step towards fully characterizing diverse substellar atmospheres, that illustrates the underlying principles and critical problems.Insights are obtained through analysis of the dependence of atmospheric characteristics on basic planetary parameters. Dominant processes that influence atmospheric stability, energy transport, temperature, composition and flow pattern are discussed and elaborated with simple scaling laws. We dedicate this review to Dr. Adam P. Showman(1968–2020) in recognition of his fundamental contribution to the understanding of atmospheric dynamics on giant planets, exoplanets and brown dwarfs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11673052 and 41661164034)the Pilot Project of the Chinese Academy of Sciences(No.XDB18010203)
文摘Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a ro- taring cylindrical annulus, which simultaneously possesses slow precession. The same problem has been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincar6 number Po and the radius-height aspect ratio F. While in an annulus, there is another parameter, the inner-radius-height aspect ratio T, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction be- tween the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u111, followed by u113 or u112, always dominates the precessing flow when 0.001 ≤Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.
基金financially supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12033010,11773081,12111530175)the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences(grant No.XDA 15020800)the Foundation of Minor Planets of the Purple Mountain Observatory。
文摘The Standards of Fundamental Astronomy(SOFA)is a service provided by the International Astronomical Union that offers algorithms and software for astronomical calculations,which was released in two versions for FORTRAN77 and ANSI C,respectively.In this work,we implement the Python package PyMsOfa for SOFA service by three ways:(1)a Python wrapper package based on a foreign function library for Python(ctypes),(2)a Python wrapper package with the foreign function interface for Python calling C code(cffi)and(3)a Python package directly written in pure Python codes from SOFA subroutines.The package PyMsOfa has fully implemented 247 functions of the original SOFA routines released on 2023 October 11.In addition,PyMsOfa is also extensively examined,which is exactly consistent with those test examples given by the original SOFA.This Python package can be suitable to not only the astrometric detection of habitable planets from the Closeby Habitable Exoplanet Survey mission,but also for the frontier themes of black holes and dark matter related to astrometric calculations and other fields.The source codes are available via http://pypi.org/project/PyMsOfa/and https://github.com/CHES2023/PyMsOfa.
基金financed by the National Natural Science Foundation of China(Grant No.12022517)the Science and Technology Development Fund,Macao SAR(File No.0048/2020/A1)the Pre-Research Projects on Civil Aerospace Technologies of China National Space Administration(Grant Nos.D020308 and D020303)。
文摘The remnant magnetism in the crust of Martian southern highland is associated with the magnetic sources at an average depth of~32 km.In this work,we investigate the magnetization of Martian crust via 1-D parameterized model for the stagnant-lid mantle convection.According to our model,the magnetization of Martian crust is likely to take place in the top-down manner during 4.1-3.7 Ga.To reproduce the average depth of magnetic sources below the southern highland,magnetite and Mg-ferrite are anticipated to be the magnetic carriers in the Martian crust,implying the serpentinisation therein.If magnetite is the only magnetic carrier in the Martian crust,the early climate must be warm enough to maintain a surface temperature of 300 K during 4.1-3.7 Ga at least.Such a warm climate is more likely to be a regional phenomenon associated with the serpentinisation in the crust of the southern highland or the hot ejecta of Borialis impact depositing on the southern hemisphere.
基金the National Natural Science Foundation of China(U1831132,41874010)Innovation Group of Natural Fund of Hubei Province(2018CFA087)+1 种基金the Science and Technology Development Fund of Macao Special Administrative Region(FDCT 007/2016/A1,119/2017/A3,187/2017/A3)Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing(KF201813)。
文摘Understanding the internal structure of Venus promotes the exploration of the evolutionary history of this planet.However,the existing research concerning the internal structure of Venus has not used any inversion methods.In this work we employed an inversion method to determine the internal structure of Venus using observational or hypothetical geodetic data;these data include mass,mean radius,mean moment of inertia and second degree tidal Love number k2.To determine the core state of Venus,we created two models of Venus,an isotropic 3-layer model with entire liquid core and an isotropic 4-layer model with liquid outer core and a solid inner core,assuming that the interior of Venus is spherically symmetric and in hydrostatic equilibrium.A series of the sensitivity analysis of interior structure parameters to the geodetic data considered in here shows that not all of the parameters can be constrained by the geodetic data from Venus.On this basis,a Markov Chain Monte Carlo algorithm was used to determine the posterior probability distribution and the optimal values of the internal structure parameters of Venus with the geodetic data.We found that the 3-layer model is more credible than the 4-layer model via currently geodetic data.For the assumption of the 3-layer model with the k2=0.295±0.066,I/MR^2=0.33±0.0165,andρ=5242.7±2.6 kg m^-3,the liquid iron-rich core of Venus has a radius of 3294+215-261km,which suggests a larger core than previous research has indicated.The average density of the mantle and liquid core of Venus are 4101+325-375and 11885+955-1242kg m~^-3,respectively.
基金the Indian Space Research Organization,Bangalore,for funding under the Ch-1 AO Research Project(ISRO/SSPO/CH-1/2016–2019)to carry out this research work。
文摘The Mare Moscoviense is an astonishing rare flatland multi-ring basin and one of the recognizable mare regions on the Moon's farside.The mineralogical,chronological,topographical and morphological studies of the maria surface of the Moon provide a primary understanding of the origin and evolution of the mare provinces.In this study,the Chandrayaan-1 M^(3)data have been employed to prepare optical maturity index,FeO and TiO^(2)concentration,and standard band ratio map to detect the mafic indexes like olivine and pyroxene minerals.The crater size frequency distribution method has been applied to LROC WAC data to obtain the absolute model ages of the Moscoviense basin.The four geological unit ages were observed as 3.57 Ga(U-2),3.65 Ga(U-1),3.8 Ga(U-3)and 3.92 Ga(U-4),which could have been formed between the Imbrian and Nectarian epochs.The M^(3)imaging and reflectance spectral parameters were used to reveal the minerals like pyroxene,olivine,ilmenite,plagioclase,orthopyroxene-olivine-spinel lithology,and olivine-pyroxene mixtures present in the gabbroic basalt,anorthositic and massive ilmenite rocks,and validated with the existing database.The results show that the Moscoviense basin is dominated by intermediate TiO^(2)basalts that derived from olivine-ilmenite-pyroxene cumulate depths ranging from 200 to 500 km between 3.5 Ga and 3.6 Ga.
基金supported by the National Natural Science Foundation of China(Grant Nos.11973072 and 11773058)funded by the National Science Foundation under awards EAR-0949446 and EAR-1550901 for supporting the development of ASPECT。
文摘A so-called megaregolith layer that is considered to be produced by continuous impacts in Mercury’s early stages is integrated into the thermal evolution models of Mercury to study its influence on the thermal evolution of Mercury’s silicate shell.This research first implements a one-dimensional parametric global thermal evolution model.Our results indicate that megaregolith directly affects the thermal evolution of Mercury’s silicate shell by virtue of its good insulation performance.The way megaregolith exerts its influence is by prolonging the process of partial melting and reducing the heat loss,resulting in a thicker crust and thinner stagnant lid.As for the deep parts of the silicate shell,it is suggested that more energy is taken away from the mantle due to the longer partial melting,leading to lower temperatures below the crust compared with the case in the absence of megaregolith,which further helps to advance the formation time of the inner core and promote its final size.In addition,we also carry out a simplified two-dimensional mantle convection simulation as a supplement to the one-dimensional model.The two-dimensional simulation depicts a typical mantle plume fractional melting scenario.Our calculations indicate that megaregolith may be key to the long-term volcanic activities on Mercury.As far as the megaregolith itself is concerned,the thermal structure of this particular layer is more sensitive to thermal conductivity,suggesting that for such a highly fragmented structure,the thermal conductivity coefficient plays a key role in its evolution.Our work emphasizes the importance of megaregolith to the evolution of Mercury.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11103063 and 11178008)the National Key Basic Research Program of China (Grant No. 2015CB857101)partly supported by the Key Laboratory of Planetary Sciences, Chinese Academy of Sciences (Grant No. PSL15 04)
文摘Electron density profiles of Venus' ionosphere are inverted from the Venus Express (VEX) one-way open-loop radio occultation experiments carried out by the Shanghai 25 m antenna from November 2011 to January 2012 at solar maximum conditions and by the New Norcia 35 m antenna from August 2006 to June 2008 at solar intermediate conditions. The electron density profile (from 110 km to 400 km), retrieved from the X-band egress observation at the Shanghai station, shows a single peak near 147 km with a peak density of about 2 × 10^4 cm-3 at a solar zenith angle of 94° As a comparison, the VEX radio science (VeRa) observations at the New Norcia station were also examined, including S- and X-band and dual-frequency data in the ingress mode. The results show that the electron density profiles retrieved from the S-band data are more analogous to the dual-frequency data in terms of the profile shape, compared with the X-band data. Generally, the S-band results slightly underestimate the magnitude of the peak density, while the X-band results overestimate it. The discrepancy in the X-band profile is probably due to the relatively larger unmod- eled orbital errors. It is also expected that the ionopause height is sensitive to the solar wind dynamical pressure in high and intermediate solar activities, usually in the range of 200-1000 km on the dayside and much higher on the nightside. Structural variations ("bulges" and fluctuations) can be found in the electron density profiles during intermediate solar activity, which may be caused by the interaction of the solar wind with the ionosphere. Considerable ionizations can be observed in Venus' nightside ionosphere, which are unexpected for the Martian nightside ionosphere in most cases.
基金supported by the National Natural Science Foundation of China(Grant Nos.41925006,12003075,42371383,and 42271450)。
文摘Impact craters are formed due to the high-speed collisions between small to medium-sized celestial bodies.Impact is the most significant driving force in the evolution of celestial bodies,and the impact craters provide crucial insights into the formation,evolution,and impact history of celestial bodies.In this paper,we present a detailed review of the characteristics of impact craters,impact crater remote sensing data,recognition algorithms,and applications related to impact craters.We first provide a detailed description of the geometric texture,illumination,and morphology characteristics observed in remote sensing data of craters.Then we summarize the remote sensing data and cataloging databases for the four terrestrial planets(i.e.,the Moon,Mars,Mercury,and Venus),as well as the impact craters on Ceres.Subsequently,we study the advancement achieved in the traditional methods,machine learning methods,and deep learning methods applied to the classification,segmentation,and recognition of impact craters.Furthermore,based on the analysis results,we discuss the existing challenges in impact crater recognition and suggest some solutions.Finally,we explore the implementation of impact crater detection algorithms and provide a forward-looking perspective.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42241111, 41773061, 41773063)。
文摘Volcanic activity is the main process for heat-material exchange and circulation for differentiated planets. All terrestrial planets in the Solar System, the Moon, the satellites of giant planets, and the dwarf planets once experienced or are currently experiencing volcanic activities. This paper summarized the volcanism(main volcanic features and their formation) on the Moon, Mars, Venus, and Mercury in the inner Solar System, volcanism and cryovolcanism on satellites(Io, Europa,Enceladus) of giant planets, as well as volcanism on dwarf planets including Cere in the main asteroid belt and Pluto in the Kuiper belt. This work shows volcanism in the Solar System is driven by various factors, forming abundant volcanic landforms.It has significant meanings to compare volcanism happening on different planets using comparative planetology approaches for a better understanding of volcanism, the planetary habitability, and the information contained on the origin and evolution of planets in the Solar System.