期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Shear-resistant behavior of light composite shear wall
1
作者 李升才 董毓利 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2768-2775,共8页
Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan.The analysis results show that this kind of composite wall panel works very w... Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan.The analysis results show that this kind of composite wall panel works very well,and can be regarded as a solid panel.The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play.Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack. 展开更多
关键词 composite shear wall shear test hidden frame shear design cracking strength shearing diagonal crack
下载PDF
Seismic tests of post-tensioned self-centering building frames with column and slab restraints 被引量:2
2
作者 Chung-Che CHOU Jun-Hen CHEN 《Frontiers of Structural and Civil Engineering》 SCIE EI 2011年第3期323-334,共12页
Post-tensioned(PT)self-centering moment frames have been developed as an alternative to typical moment-resisting frames(MRFs)for earthquake resistance.When a PT frame deforms laterally,gaps between the beams and colum... Post-tensioned(PT)self-centering moment frames have been developed as an alternative to typical moment-resisting frames(MRFs)for earthquake resistance.When a PT frame deforms laterally,gaps between the beams and columns open.However,the gaps are constrained by the columns and the slab in a real PT selfcentering building frame.This paper presents a methodology for evaluating the column restraint and beam compression force based on the column deformation and gap openings at all stories.The method is verified by cyclic tests of a full-scale,two-bay by one-story PT frame.Moreover,a sliding slab is proposed to minimize restraints on the expansion of the PT frame.Shaking table tests were conducted on a reduced-scale,two-by-two bay one-story specimen,which comprises one PT frame and two gravitational frames.The PT frame and gravitational frames are self-centering throughout the tests,responding in phase with only minor differences in peak drifts caused by expansion of the PT frame.When the specimen is excited by a simulation of the 1999 Chi-Chi earthquake with a peak ground acceleration of 1.87 g,the maximum interstory drift and the residual drift are 7.2%and 0.01%,respectively. 展开更多
关键词 post-tensioned frame frame expansion column restraint sliding slab frame test shake table test
原文传递
Validation of a steel dual-core self-centering brace (DC-SCB) for seismic resistance: from brace member to one-story one-bay braced frame tests 被引量:1
3
作者 Chung-Che CHOU Ping-Ting CHUNG +1 位作者 Tsung-Han WU Alexis Rafael Ovalle BEATO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第3期303-311,共9页
A steel dual-core self-centering brace (DC-SCB) is an innovative structural member that provides both energy dissipation and self-centering properties to structures, reducing maximum and residual drifts of structure... A steel dual-core self-centering brace (DC-SCB) is an innovative structural member that provides both energy dissipation and self-centering properties to structures, reducing maximum and residual drifts of structures in earthquakes. The axial deformation capacity of the DC-SCB is doubled by a parallel arrangement of two inner cores, one outer box and two sets of tensioning elements. This paper presents cyclic test results of a DC-SCB component and a full- scale one-story, one-bay steel frame with a DC-SCB. The DC-SCB that was near 8 m-long was tested to evaluate its cyclic behavior and durability. The DC-SCB performed well under a total of three increasing cyclic loading tests and 60 low- cycle fatigue loading tests without failure. The maximum axial load of the DC-SCB was near 1700 kN at an interstory drift of 2.5%. Moreover, a three-story dual-core self-centering braced frame (DC-SCBF) with a single-diagonal DC-SCB was designed and its first-story, one-bay DC-SCBF subassembly specimen was tested in multiple earthquake-type loadings. The one-story, one-bay subassembly frame specimen performed well up to an interstory drift of 2% with yielding at the column base and local buckling in the steel beam; no damage of the DC-SCB was found after all tests. The maximum residual drift of the DC-SCBF caused by beam local buckling was 0.5% in 2.0% drift cycles. 展开更多
关键词 dual-core self-centering brace (DC-SCB) braced frame tests residual deformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部