A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
文中提出一种新型单级式隔离AC-DC变换器及控制方案。所提结构在不改变图腾柱无桥功率因数校正(totem pole bridge-free power factor correction,TP-PFC)和双向全桥(dual active bridge,DAB)两级式AC-DC变换器特性的前提下,将TP-PFC高...文中提出一种新型单级式隔离AC-DC变换器及控制方案。所提结构在不改变图腾柱无桥功率因数校正(totem pole bridge-free power factor correction,TP-PFC)和双向全桥(dual active bridge,DAB)两级式AC-DC变换器特性的前提下,将TP-PFC高频桥臂和DAB原边侧第一个桥臂进行开关复用,减小了开关器件数目。同时,相较于TP-PFC和DAB两级式AC-DC变换器,取消了直流母线电解电容并且抑制了交流电感电流尖峰。利用其拓扑特点及所提出的控制方案,实现了拓扑开关器件的全范围软开关。首先详细分析所提拓扑结构的工作特性,包括工作模态、拓扑优点、功率特性及软开关特性;其次基于对拓扑的分析,提出控制简单的控制策略;最后,对所提拓扑结构及控制方案进行实验验证。展开更多
This paper deals with an innovative low-loss AC switch, named as TBBS (transistor based bidirectional switch), based on the association of super-gain BJTs developed by the GREMAN laboratory. The main characterizatio...This paper deals with an innovative low-loss AC switch, named as TBBS (transistor based bidirectional switch), based on the association of super-gain BJTs developed by the GREMAN laboratory. The main characterization results of the super-gain BJT are reminded to identify the key parameters that are essential to build the TBBS. A complete characterization database in static mode of this new AC switch is discussed. In particular, its forward and reverse-biased features have been measured to see the evolution of the DC current gain as a function of the current density. The TBBS makes sense when using the super-gain BJT (bipolar junction transistor) in reverse mode. It means that the reverse DC current gain has to be sufficient (at least higher than l compared with the conventional BJT one). This new AC switch is bidirectional in current and voltage, totally controllable (turn-on and turn-off) and the most attractive solution in terms of on-state power losses. Further, its manufacturing process is as easier as existing device such as triac.展开更多
提出一种适用于V2G(Vehicle tǒgrid,VZG)和电网-蓄电池储能等系统的单级双向隔离AC-DC变换器。该变换器可实现高效率、高功率密度,及能量双向传输。该文介绍该变换器的工作原理、功率传输特性,分析并设计软开关ZVS(zero voltage switch...提出一种适用于V2G(Vehicle tǒgrid,VZG)和电网-蓄电池储能等系统的单级双向隔离AC-DC变换器。该变换器可实现高效率、高功率密度,及能量双向传输。该文介绍该变换器的工作原理、功率传输特性,分析并设计软开关ZVS(zero voltage switching,ZVS)的实现,最终可在宽增益范围和全负载情况下实现软开关,并制作一台500 W的实验样机进行验证。展开更多
Calculation of static voltage stability margin(SVSM)of AC/DC power systems with lots of renewable energy sources(RESs)integration requires consideration of uncertain load growth and renewable energy generation output....Calculation of static voltage stability margin(SVSM)of AC/DC power systems with lots of renewable energy sources(RESs)integration requires consideration of uncertain load growth and renewable energy generation output.This paper presents a bi-level optimal power flow(BLOPF)model to identify the worst-case SVSM of an AC/DC power system with line commutation converter-based HVDC and multi-terminal voltage sourced converter-based HVDC transmission lines.Constraints of uncertain load growth’s hypercone model and control mode switching of DC converter stations are considered in the BLOPF model.Moreover,uncertain RES output fluctuations are described as intervals,and two three-level optimal power flow(TLOPF)models are established to identify interval bounds of the system worst-case SVSM.The two TLOPF models are both transformed into max–min bi-level optimization models according to independent characteristics of different uncertain variables.Then,transforming the inner level model into its dual form,max–min BLOPF models are simplified to single-level optimization models for direct solution.Calculation results on the modified IEEE-39 bus AC/DC case and an actual large-scale AC/DC case in China indicate correctness and efficiency of the proposed identification method.展开更多
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
文摘文中提出一种新型单级式隔离AC-DC变换器及控制方案。所提结构在不改变图腾柱无桥功率因数校正(totem pole bridge-free power factor correction,TP-PFC)和双向全桥(dual active bridge,DAB)两级式AC-DC变换器特性的前提下,将TP-PFC高频桥臂和DAB原边侧第一个桥臂进行开关复用,减小了开关器件数目。同时,相较于TP-PFC和DAB两级式AC-DC变换器,取消了直流母线电解电容并且抑制了交流电感电流尖峰。利用其拓扑特点及所提出的控制方案,实现了拓扑开关器件的全范围软开关。首先详细分析所提拓扑结构的工作特性,包括工作模态、拓扑优点、功率特性及软开关特性;其次基于对拓扑的分析,提出控制简单的控制策略;最后,对所提拓扑结构及控制方案进行实验验证。
文摘This paper deals with an innovative low-loss AC switch, named as TBBS (transistor based bidirectional switch), based on the association of super-gain BJTs developed by the GREMAN laboratory. The main characterization results of the super-gain BJT are reminded to identify the key parameters that are essential to build the TBBS. A complete characterization database in static mode of this new AC switch is discussed. In particular, its forward and reverse-biased features have been measured to see the evolution of the DC current gain as a function of the current density. The TBBS makes sense when using the super-gain BJT (bipolar junction transistor) in reverse mode. It means that the reverse DC current gain has to be sufficient (at least higher than l compared with the conventional BJT one). This new AC switch is bidirectional in current and voltage, totally controllable (turn-on and turn-off) and the most attractive solution in terms of on-state power losses. Further, its manufacturing process is as easier as existing device such as triac.
文摘提出一种适用于V2G(Vehicle tǒgrid,VZG)和电网-蓄电池储能等系统的单级双向隔离AC-DC变换器。该变换器可实现高效率、高功率密度,及能量双向传输。该文介绍该变换器的工作原理、功率传输特性,分析并设计软开关ZVS(zero voltage switching,ZVS)的实现,最终可在宽增益范围和全负载情况下实现软开关,并制作一台500 W的实验样机进行验证。
基金supported by the National Natural Science Foundation of China(Grant No.51977080)the Natural Science Foundation of Guangdong Province(Grant No.2022A1515010332)supported by the U.S.National Science Foundation(Grant#2124849).
文摘Calculation of static voltage stability margin(SVSM)of AC/DC power systems with lots of renewable energy sources(RESs)integration requires consideration of uncertain load growth and renewable energy generation output.This paper presents a bi-level optimal power flow(BLOPF)model to identify the worst-case SVSM of an AC/DC power system with line commutation converter-based HVDC and multi-terminal voltage sourced converter-based HVDC transmission lines.Constraints of uncertain load growth’s hypercone model and control mode switching of DC converter stations are considered in the BLOPF model.Moreover,uncertain RES output fluctuations are described as intervals,and two three-level optimal power flow(TLOPF)models are established to identify interval bounds of the system worst-case SVSM.The two TLOPF models are both transformed into max–min bi-level optimization models according to independent characteristics of different uncertain variables.Then,transforming the inner level model into its dual form,max–min BLOPF models are simplified to single-level optimization models for direct solution.Calculation results on the modified IEEE-39 bus AC/DC case and an actual large-scale AC/DC case in China indicate correctness and efficiency of the proposed identification method.