期刊文献+
共找到435篇文章
< 1 2 22 >
每页显示 20 50 100
Retrospective and prospective review of the generalized nonlinear strength theory for geomaterials
1
作者 Shunchuan Wu Jiaxin Wang +3 位作者 Shihuai Zhang Shigui Huang Lei Xia Qianping Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1767-1787,共21页
Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive st... Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength. 展开更多
关键词 rock mechanics rock mass strength strength theory failure criterion Hoek-Brown criterion intermediate principal stress deviatoric plane smoothness and convexity
下载PDF
Investigation of the influence of intermediate principal stress on the dynamic responses of rocks subjected to true triaxial stress state 被引量:9
2
作者 Wei You Feng Dai +2 位作者 Yi Liu Hongbo Du Ruochen Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期913-926,共14页
Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal ... Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal stress,and minor principal stress,respectively)is essential to the safety of underground engineering.However,in the laboratory,it is difficult to maintain the constant true triaxial stress state of rocks during the dynamic testing process.Herein,a numerical servo triaxial Hopkinson bar(NSTHB)was developed to study the dynamic responses of rocks confronted with a true triaxial stress state,in which lateral stresses can maintain constant.The results indicate that the dynamic strength and elastic modulus of rocks increase with the rise of intermediate principal stressσ2,while the dynamic elastic modulus is independent of the dynamic strain rate.Simulated acoustic emission distributions indicate that the intermediate principal stressσ2 dramatically affects dynamic failure modes of triaxial confined rocks.Asσ2 increases,the failure pattern switches from a single diagonal shear zone into two parallel shear zones with a small slant.Moreover,a recent triaxial Hopkinson bar experimental system using three bar pairs is also numerically established,and the measuring discrepancies are identified between the two numerical bar systems.The proposed NSTHB system provides a controllable tool for studying the dynamic triaxial behavior of rocks. 展开更多
关键词 Triaxial Hopkinson bar intermediate principal stress Dynamic strength Failure modes Numerical simulation True triaxial stress
下载PDF
Experimental study on failure characteristics of single-sided unloading rock under different intermediate principal stress conditions 被引量:9
3
作者 Chongyan Liu Guangming Zhao +4 位作者 Wensong Xu Xiangrui Meng Zhixi Liu Xiang Cheng Gang Lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期275-287,共13页
Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial... Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity. 展开更多
关键词 Single-sided unloading Acoustic emission True triaxial intermediate principal stress stress intensity factor
下载PDF
Strainburst process of marble in tunnel-excavation-induced stress path considering intermediate principal stress 被引量:24
4
作者 JIANG Bang-you GU Shi-tan +2 位作者 WANG Lian-guo ZHANG Guang-chao LI Wen-shuai 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期984-999,共16页
Strainburst is one type of rockburst that generally occurs in deep tunnel.In this study,the strainburst behaviors of marble specimens were investigated under tunnel-excavation-induced stress condition,and two stress p... Strainburst is one type of rockburst that generally occurs in deep tunnel.In this study,the strainburst behaviors of marble specimens were investigated under tunnel-excavation-induced stress condition,and two stress paths were designed,a commonly used stress path in true triaxial unloading rockburst tests and a new test path in which the intermediate principal stress was varied.During the tests,a high-speed camera was used to record the strainburst process,and an acoustic emission(AE)monitoring system was used to monitor the AE characteristics of failure.In these two stress paths,all the marble specimens exhibited strainbursts;however,when the intermediate principal stress was varied,the rockburst became more violent.The obtained results indicate that the intermediate principal stress has a significant effect on rockburst behavior of marble.Under a higher intermediate principal stress before the unloading,more elastic strain energy was accumulated in the specimen,and the cumulative AE energy was higher in the rockburst-induced failure,i.e.,more elastic strain energy was released during the failure.Therefore,more violent failure was observed:more rock fragments with a higher mass and larger size were ejected outward. 展开更多
关键词 strainburst true triaxial test intermediate principal stress acoustic emission MARBLE
下载PDF
Failure criterion for soft rocks considering intermediate principal stress 被引量:4
5
作者 Zhongwei Wang Quansheng Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期565-575,共11页
The significant differences between hard rocks(more brittle)and soft rocks(more ductile)may suggest the use of different failure criteria.A strength criterion for soft rocks that includes intermediate principal stress... The significant differences between hard rocks(more brittle)and soft rocks(more ductile)may suggest the use of different failure criteria.A strength criterion for soft rocks that includes intermediate principal stress was proposed.The new criterion includes two independent parameters:the uniaxial compressive strength(σ_(ci)),which can be obtained from common laboratory tests or indirectly estimated by alternative index tests in the laboratory or field;and f(joint),which is used to characterize the rock mass quality and can be easily estimated.The authors compared the predictive capabilities of the new criterion with other criteria using the database of soft rocks under two conditions:with and without triaxial data.For the estimation of triaxial and true-triaxial strengths,the new criterion generally produced a better fit.The proposed criterion is practical for an approximate first estimation of rock mass strength,even without triaxial data,as it balances accuracy(lower prediction error)and simplicity(fewer independent parameters). 展开更多
关键词 Soft rock intermediate principal stress Failure criterion True-triaxial Uniaxial compressive strength
下载PDF
Critical embedment depth of a rigid retaining wall against overturning in unsaturated soils considering intermediate principal stress and strength nonlinearity 被引量:4
6
作者 张常光 陈新栋 范文 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期944-954,共11页
The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect t... The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect the unsaturated soil strength; meanwhile, the relationship between the unsaturated soil strength and matric suction is nonlinear. This work is to present closed-form equations of critical embedment depth for a rigid retaining wall against overturning by means of moment equilibrium. Matric suction is considered to be distributed uniformly and linearly with depth. The unified shear strength formulation for unsaturated soils under the plane strain condition is adopted to characterize the intermediate principal stress effect, and strength nonlinearity is described by a hyperbolic model of suction angle. The result obtained is orderly series solutions rather than one specific answer; thus, it has wide theoretical significance and good applicability. The validity of this present work is demonstrated by comparing it with a lower bound solution. The traditional overturning designs for rigid retaining walls, in which the saturated soil mechanics neglecting matric suction or the unsaturated soil mechanics based on the Mohr-Coulomb criterion are employed, are special cases of the proposed result. Parametric studies about the intermediate principal stress, matric suction and its distributions along with two strength nonlinearity methods on a new defined critical buried coefficient are discussed. 展开更多
关键词 unsaturated soils retaining walls overturning stability critical embedment depth intermediate principal stress strength nonlinearity
下载PDF
New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength 被引量:3
7
作者 Rennie Kaunda 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期338-347,共10页
Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stre... Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects. 展开更多
关键词 Artificial neural networks Polyaxial loading intermediate principal stress Rock failure criteria True triaxial test
下载PDF
Influence of intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening 被引量:5
8
作者 张社荣 孙博 +1 位作者 王超 严磊 《Journal of Central South University》 SCIE EI CAS 2014年第4期1571-1582,共12页
Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out tru... Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa). 展开更多
关键词 rock mechanics intermediate principal stress hard rock with pre-existing circular opening failure mechanism discrete element
下载PDF
Effect of intermediate principal stress on strength of soft rock under complex stress states 被引量:1
9
作者 马宗源 廖红建 党发宁 《Journal of Central South University》 SCIE EI CAS 2014年第4期1583-1593,共11页
A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/s... A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/softening constitutive model based on the unified strength theory(UST) were used to simulate both the consolidated-undrained(CU) triaxial and the consolidated-drained(CD) true triaxial tests. Based on the results of the true triaxial tests simulation, the effect of the intermediate principal stress on the strength of soft rock was investigated. Finally, an example of an axial compression test for a hard rock pillar with a soft rock interlayer was analyzed using the two-dimensional finite difference code FLAC. The CD true triaxial test simulations for diatomaceous soft rock suggest the peak and residual strengths increase by 30% when the effect of the intermediate principal stress is taken into account. The axial compression for a rock pillar indicated the peak and residual strengths increase six-fold when the soft rock interlayer approached the vertical and the effect of the intermediate principal stress is taken into account. 展开更多
关键词 soft rock strength strain-softening complex stress state effect of intermediate principal stress
下载PDF
Elasto-plastic analysis of the surrounding rock mass in circular tunnel based on the generalized nonlinear unified strength theory 被引量:4
10
作者 Huang Xiujie Zhang Jixun +2 位作者 Yang Ling Yang Shikou Wang Xingli 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期819-823,共5页
The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the roc... The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the rock properties on its deformation and failure of rock mass, the generalized nonlinear unified strength theory and elasto-plastic mechanics are used to deduce analytic solution of the radius and stress of tunnel plastic zone and the periphery displacement of tunnel under uniform ground stress field. The results show that: intermediate principal stress coefficient b has significant effect on the plastic range,the magnitude of stress and surrounding rock pressure. Then, the results are compared with the unified strength criterion solution and Mohr–Coulomb criterion solution, and concluded that the generalized nonlinear unified strength criterion is more applicable to elasto-plastic analysis of underground tunnel surrounding rock. 展开更多
关键词 Circular tunnel Generalized Hoek–Brown strength criterion Generalized nonlinear unified strength CRITERION intermediate principal stress Elasto-plastic stress and displacement
下载PDF
Comparative analysis of deformation and failure mechanisms of underground powerhouses on the left and right banks of Baihetan hydropower station 被引量:4
11
作者 Anchi Shi Congjiang Li +3 位作者 Wangbing Hong Gongda Lu Jiawen Zhou Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期731-745,共15页
The stability of the surrounding rocks of large underground powerhouses is always emphasized during the construction process,especially in large-scale underground projects under construction,such as the Baihetan hydro... The stability of the surrounding rocks of large underground powerhouses is always emphasized during the construction process,especially in large-scale underground projects under construction,such as the Baihetan hydropower station in China.According to field investigations,numerical simulations and monitoring data analysis,we present a comparative analysis of the deformation and failure characteristics of the surrounding rocks of underground powerhouses on the left and right banks of the Baihetan hydropower station.The failure characteristics and deformation magnitude of the underground powerhouses on the left and right banks are quite different.Under the disadvantageous condition where the maximum principal stress intersects the axis of the powerhouse at a large angle,the left bank underground powerhouse shows prominent stress-controlled failure characteristics such as spalling,slack collapse and concrete cracking.Although the maximum principal stress is in the favorable condition which intersects the right bank powerhouse at a small angle,the relatively high intermediate principal stress with an angle subvertical to the right bank powerhouse plays an essential role in its deformation and failure,indicating that the influence of high intermediate principal stress cannot be ignored.In addition,structural plane-controlled failure and large deformation are also more evident on the right bank due to the extensive distribution of weak structural planes and complex surrounding rock properties. 展开更多
关键词 Underground powerhouse stress-controlled failure Structural plane-controlled failure Large deformation intermediate principal stress
下载PDF
Undrained response of reconstituted clay to cyclic pure principal stress rotation 被引量:1
12
作者 严佳佳 周建 +1 位作者 龚晓南 曹洋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期280-289,共10页
A series of monotonic and rotational shearing tests are carried out on reconstituted clay using a hollow cylinder apparatus under undrained condition. In the rotational shearing tests, the principal stress axes rotate... A series of monotonic and rotational shearing tests are carried out on reconstituted clay using a hollow cylinder apparatus under undrained condition. In the rotational shearing tests, the principal stress axes rotate cyclically with the magnitudes of the principal stresses keeping constant. The anisotropy of the reconstituted clay is analyzed from the monotonic shearing tests. Obvious pore pressure is induced by the principal stress rotation alone even with shear stress q0=5 k Pa. Strain components also accumulate with increasing the number of cycles and increases suddenly at the onset of failure. The deviatoric shear strain of 7.5% can be taken as the failure criterion for clay subjected to the pure cyclic principal stress rotation. The intermediate principal stress parameter b plays a significant role in the development of pore pressure and strain. Specimens are weakened by cyclic rotational shearing as the shear modulus decreases with increasing the number of cycles, and the shear modulus reduces more quickly with larger b. Clear deviation between the directions of the principal plastic strain increment and the principal stress is observed during pure principal stress rotation. Both the coaxial and non-coaxial plastic mechanisms should be taken into consideration to simulate the deformation behavior of clay under pure principal stress rotation. The mechanism of the soil response to the pure principal stress rotation is discussed based on the experimental observations. 展开更多
关键词 clay principal stress rotation intermediate principal stress undrained behavior
下载PDF
Analysis of strength characteristics of loess before and after freezing using a hollow cylinder torsional shear apparatus
13
作者 Peng Shen QingZhi Wang +2 位作者 JianHong Fang ChenWei Wang Kui Zhang 《Research in Cold and Arid Regions》 CSCD 2024年第2期63-72,共10页
This paper aims to comprehensively analyze the influence of the principal stress angle rotation and intermediate principal stress on loess's strength and deformation characteristics. A hollow cylinder torsional sh... This paper aims to comprehensively analyze the influence of the principal stress angle rotation and intermediate principal stress on loess's strength and deformation characteristics. A hollow cylinder torsional shear apparatus was utilized to conduct tests on remolded samples under both normal and frozen conditions to investigate the mechanical properties and deformation behavior of loess under complex stress conditions. The results indicate significant differences in the internal changes of soil particles, unfrozen water, and relative positions in soil samples under normal and frozen conditions, leading to noticeable variations in strength and strain development.In frozen state, loess experiences primarily compressive failure with a slow growth of cracks, while at normal temperature, it predominantly exhibits shear failure. With the increase in the principal stress angle, the deformation patterns of the soil samples under different conditions become essentially consistent, gradually transitioning from compression to extension, accompanied by a reduction in axial strength. The gradual increase in the principal stress axis angle(α) reduces the strength of the generalized shear stress and shear strain curves.Under an increasing α, frozen soil exhibits strain-hardening characteristics, with the maximum shear strength occurring at α = 45°. The intermediate principal stress coefficient(b) also significantly impacts the strength of frozen soil, with an increasing b resulting in a gradual decrease in generalized shear stress strength. This study provides a reference for comprehensively exploring the mechanical properties of soil under traffic load and a reliable theoretical basis for the design and maintenance of roadbeds. 展开更多
关键词 LOESS Hollow cylinder torsional shear apparatus Major principal stress angle intermediate principal stress coefficient
下载PDF
A STRESS VECTOR-BASED CONSTITUTIVE MODEL FOR COHESIONLESS SOIL (Ⅰ)-THEORY
14
作者 SHI Hong-yan(史宏彦) +1 位作者 XIE Djng-yi(谢定义) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第3期329-340,共12页
On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the actio... On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the action effects of stress vector are decomposed into the action effect of mean effective stress and that of the stress ratio vector (ratio of deviatoric stress vector to mean effective stress). The constitutive model can take account of the influence of both numerical and directional changes of stress vector on deformation of soil simultaneously, and is applicable of both static and dynamic loading. 展开更多
关键词 cohesionless soil rotation of principal stress axes intermediate principal stress stress vector constitutive model theORY
下载PDF
Unified semi-analytical solution for elastic-plastic stress of deep circular hydraulic tunnel with support yielding 被引量:2
15
作者 曾开华 许家雄 《Journal of Central South University》 SCIE EI CAS 2013年第6期1742-1749,共8页
A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plast... A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plastic and governed by the unified strength theory (UST).Different major principal stresses in different engineering situations and different support yielding conditions are both considered.The unified solution obtained in this work is a series of results,rather than one specific solution,hence it is suitable for a wide range of rock masses.In addition,parametric study is conducted to investigate the effect of intermediate principal stress.The result shows the major principal stress should be rationally chosen according to different engineering conditions.Finally,the applicability of the unified solution is discussed according to the critical pressures. 展开更多
关键词 unified strength theory (UST) intermediate principal stress support yielding choice of major principal stress
下载PDF
Definition of failure criterion for frozen soil under directional shear-stress path 被引量:1
16
作者 Dun Chen Wei Ma +3 位作者 GuoYu Li ZhiWei Zhou YanHu Mu ShiJie Chen 《Research in Cold and Arid Regions》 CSCD 2019年第6期428-434,共7页
A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests we... A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests were conducted at five shear rates(10,20,30,40,and 50 kPa/min)and five intermediate principal stress coefficients(b=0,0.25,0.5,0.75,and 1),with the mean principal stress(p=4.5 MPa)kept constant.The results show that the torsional strength and the generalized strength both increase with the increase of the shear rates.According to the failure modes of frozen soil under different shear rates,the specimens present obvious plastic failure and shear band;and the torsional shear component dominates the failure modes of hollow cylindrical specimens.A shear rate of 30 kPa/min is chosen as the loading rate in the directional shear tests of frozen soil.The shape of the failure curve in theπplane is dependent on the directional anglesαof the major prin cipal stress.It is reasonable to use the strain-hardening curves to define the deviatoric stress value atγg=15%(generalized shear strain)as the failure criterion of frozen soil under a directional shear-stress path. 展开更多
关键词 frozen soil hollow cylinder apparatus intermediate principal stress coefficient failure criterion directional shear-stress path
下载PDF
考虑软化和扩容的圆形巷道围岩Z-P准则弹塑性解 被引量:1
17
作者 经来旺 谢金鑫 +3 位作者 尚佳乐 冯瑜腾 蒋浩杰 经纬 《金属矿山》 CAS 北大核心 2024年第2期88-96,共9页
巷道围岩受应力作用表现出的软化、扩容行为对巷道的变形和破环有重大影响。为了研究软化、扩容特性对巷道围岩稳定性的影响,根据岩体的软化特性,建立理想的弹性软化模型,将围岩分为弹性区、塑性软化区和破裂区;基于Zienkiewicz-Pande... 巷道围岩受应力作用表现出的软化、扩容行为对巷道的变形和破环有重大影响。为了研究软化、扩容特性对巷道围岩稳定性的影响,根据岩体的软化特性,建立理想的弹性软化模型,将围岩分为弹性区、塑性软化区和破裂区;基于Zienkiewicz-Pande准则和非关联流动法则,考虑围岩的软化、扩容特性,推导出含中间主应力的圆形巷道弹塑性解析解;将Z-P准则与M-C、D-P等准则进行比较,分析了软化模量、扩容等因素对巷道围岩的影响。结果表明:Z-P准则可良好地适用于发生软化、扩容的巷道;中间主应力系数为0.4时,围岩塑性区范围最小,围岩位移最小,塑性区内应力最大;软化模量越大,围岩破裂区半径越大;剪胀角越大,塑性区位移越大,破裂区半径越大;支护阻力越大,巷道塑性区范围越小,且提高支护阻力能有效控制巷道围岩的变形。 展开更多
关键词 Z-P准则 软化 扩容 中间主应力 弹塑性分析
下载PDF
基于能量转化机制的岩石强度的演化机理研究 被引量:1
18
作者 郭建强 王姣姣 +1 位作者 张钦榕 刘继 《力学季刊》 CAS CSCD 北大核心 2024年第1期155-166,共12页
针对岩石强度的演化机理是提高强度准则计算精度与适用性的前提,基于能量转化是物质物理过程的本质属性,弹性应变能是材料破坏的内在机理,通过试验与理论研究,探究了围压、中间主应力及泊松比对岩石强度演化规律的影响.结果表明:岩石破... 针对岩石强度的演化机理是提高强度准则计算精度与适用性的前提,基于能量转化是物质物理过程的本质属性,弹性应变能是材料破坏的内在机理,通过试验与理论研究,探究了围压、中间主应力及泊松比对岩石强度演化规律的影响.结果表明:岩石破坏与应力状态及岩石变形特性有关,忽略泊松比的影响是中间主应力效应提出的理论依据,并指出围压效应与中间主应力效应忽略变形影响,既与试验结果不一致,又是据此建立的强度理论精度较差的内在原因.岩石强度的演化是围压、中间主应力及泊松比共同作用的结果,并据此研究了静水应力状态下材料破坏特性、围压区间性及三轴拉伸强度恒大于三轴压缩强度条件.理论及试验表明,体现了围压、中间主应力及泊松比影响的强度理论具有较高计算精度与适用性.研究成果对于精准地描述岩石破坏特性,建立普遍适用的强度理论具有重要意义. 展开更多
关键词 弹性应变能 强度演化 中主应力效应 泊松比 应力状态
原文传递
重塑黄土的往返加卸载真三轴试验研究
19
作者 邵帅 张佳庆 +3 位作者 邵生俊 宋佳瑶 严广艺 朱学亮 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第7期1491-1497,共7页
针对不同应力路径往返加卸载条件下黄土累积塑性应变发展特性,以重塑黄土为研究对象,利用真三轴仪开展不同应力路径的往返加卸载试验研究,探究不同应力路径、应力幅值下黄土的循环应力时程曲线、滞回曲线、骨干曲线及累积塑性应变曲线... 针对不同应力路径往返加卸载条件下黄土累积塑性应变发展特性,以重塑黄土为研究对象,利用真三轴仪开展不同应力路径的往返加卸载试验研究,探究不同应力路径、应力幅值下黄土的循环应力时程曲线、滞回曲线、骨干曲线及累积塑性应变曲线的影响规律。揭示了应力路径对重塑黄土力学特性的影响,描述了各主应力与中主应力比b和应力幅值的相关性,提出了重塑黄土的滞回曲线近似呈椭圆形,长轴斜率随中主应力比b值的增大而增大,随应力幅值的增大而减小;随着中主应力比b值的增大,循环应力-应变骨干曲线随之硬化,累积塑性应变曲线依次降低,且累积塑性应变发展更早的进入平缓阶段,为解决相关黄土工程问题提供了参考。 展开更多
关键词 真三轴仪 循环应力 中主应力比 滞回曲线 骨干曲线 累积塑性应变
原文传递
卸载状态下非均质圆形寒区隧道围岩弹塑性统一解 被引量:1
20
作者 梁沈伟 王彬 +1 位作者 荣传新 于胜民 《冰川冻土》 CSCD 2024年第2期650-661,共12页
以统一强度理论作为卸载状态下寒区隧道冻结围岩屈服准则,综合考虑围岩非均质特性和中间主应力效应对冻结围岩强度影响,建立寒区隧道应力位移弹塑性力学模型,联合各区域边界条件,计算获得冻结围岩均质与非均质状态下,弹性解、塑性统一... 以统一强度理论作为卸载状态下寒区隧道冻结围岩屈服准则,综合考虑围岩非均质特性和中间主应力效应对冻结围岩强度影响,建立寒区隧道应力位移弹塑性力学模型,联合各区域边界条件,计算获得冻结围岩均质与非均质状态下,弹性解、塑性统一解以及塑性区半径的隐式方程,分别对其应力位移场讨论分析。研究表明:考虑冻结围岩的非均质特性,塑性区环向应力峰值增大40%,塑性区范围相对减少40.4%,内壁位移减少9.3%,弹性极限承载力提高41%,塑性极限承载力提高14%,影响显著。中间主应力效应能充分发挥非均质冻结围岩承载潜能,计算得到的承载力明显增大,塑性半径明显减小。所得结果可为寒区隧道开挖支护设计以及数值模拟,提供理论指导。 展开更多
关键词 寒区隧道 非均质冻结围岩 弹塑性分析 中间主应力效应 统一强度理论
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部