期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The geological structure background and the crustal structure in the northeastern margin of the Qinghai-Tibetan plateau 被引量:1
1
作者 周民都 吕太乙 +1 位作者 张元生 阮爱国 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2000年第6期687-697,718,共12页
The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geologica... The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geological data. The main results are summarized as follows: (1) The geotectonic subdivisions and the characteristics of main deep and large faults in the northeastern margin of the Qinghai-Tibetan plateau are presented; (2) The general features of the Moho are obtained mainly based on artificial seismic sounding data; (3) There exists well corresponding relation between surface faults and some features of the Moho, which suggests that such complex crustal structure might be the preparation environment of strong earthquakes. 展开更多
关键词 northeastern margin of the qinghai-tibetan plateau geological structure artificial seismic sounding crustal structure Mo?
下载PDF
Numerical simulation of temporal and spatial evolution of fold-thrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau
2
作者 Qizhi Chen Caibo Hu 《Earthquake Research Advances》 CSCD 2021年第S01期23-25,共3页
Fold-thrust belts are common structural styles under the background of long-term regional tectonic shortening.The northern and northeastern margins of the Qinghai-Tibetan Plateau are located on the edge of the growth ... Fold-thrust belts are common structural styles under the background of long-term regional tectonic shortening.The northern and northeastern margins of the Qinghai-Tibetan Plateau are located on the edge of the growth and expansion of the Qinghai-Tibetan Plateau.Since nearly 10 Ma,some significant and typical fold thrust belt have been formed.The spatial-temporal evolution of these fold-thrust belts and the characteristics of surface deformations are significant issues in geodynamics.In this paper,we use the elastoplastic finite element model with considering the contact nonlinearity to study the spatialtemporal evolution of the fold-thrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau,with particular attention to the details of the relationship between the depth and the shallow,the spatialtemporal order,and the characteristics of the surface deformation,etc.,in order to make a relatively complete mechanical interpretation of the spatial-temporal evolution of the foldthrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau from the perspective of geodynamics. 展开更多
关键词 Fold-thrust belts Finite element model Elastoplasticity Northeastern margin of the qinghai-tibetan plateau Frictonal contact
下载PDF
Seismic Strain Energy Release of Active Faults in the Southeastern Margin of the Qinghai-Tibetan Plateau
3
作者 Liu Jie Zhao Genmo +1 位作者 Wu Zhonghai Li Jiacun 《Earthquake Research in China》 CSCD 2017年第1期90-106,共17页
Using the methods of the Gutenberg magnitude energy empirical formula and the Benioff seismic strain energy release curve,we make a systematic study on seismic strain energy release of historical earthquakes in the so... Using the methods of the Gutenberg magnitude energy empirical formula and the Benioff seismic strain energy release curve,we make a systematic study on seismic strain energy release of historical earthquakes in the southeastern margin of the Qinghai-Tibetan Plateau since 1500.This paper provides a periodic table of the earthquake strain energy release in the fault zones and the fault block areas.The study shows that seismic strain energy release is strong in the east and south,and weak in the west and north.The overall seismic strain energy release of the Yushu-Xianshuihe-Xiaojiang fault system is consistent with the quasi-periodic pattern.The seismic cycle of some fault zones and fault block areas shows synchronization to a certain extent.The risk cannot be ignored in the current large release period of seismic strain energy in the southeastern margin of the Qinghai-Tibetan plateau.Local seismic risk analysis shows that seismic risk is very high on the Anninghe-Zemuhe and Xiaojiang fault zones.These dangerous zones need follow-up research.In future,it is necessary to combine different research methods to improve the reliability of seismic risk assessment. 展开更多
关键词 Southeastern margin of the qinghai-tibetan plateau Seismic strain energySeismic cycle Seismic risk
下载PDF
Source rupture characteristics of the September 5,2022 Luding M_(S)6.8 earthquake at the Xianshuihe fault zone in southwest China 被引量:2
4
作者 Guohui Li Anjian Wang Yuan Gao 《Earthquake Research Advances》 CSCD 2023年第2期8-14,共7页
On September 5,2022,at Beijing time 12:52 p.m.,an M_(S)6.8 earthquake struck Luding County,GarzêTibetan Autonomous Prefecture,Sichuan Province.The epicenter of the earthquake was at the intersection of the Sichua... On September 5,2022,at Beijing time 12:52 p.m.,an M_(S)6.8 earthquake struck Luding County,GarzêTibetan Autonomous Prefecture,Sichuan Province.The epicenter of the earthquake was at the intersection of the Sichuan-Yunnan,Bayankala,and South China blocks.The tectonic background is extremely complex,and strong earthquakes occur frequently.Based on a predetermined focal location and focal mechanism solution for the earthquake,we reversed the focal depth and rupture process of the earthquake by fitting the teleseismic P and SH waves recorded by the global seismic network.The results show that the focal depth is 16 km,with the main rupture having a length of about 45 km near the epicenter,with a maximum displacement of 1.02 m.Although the rupture mainly propagates from the north–northwest(NNW)to the south–southeast(SSE)along the fault strike,there is a small-scale rupture slip zone at shallow depths in the north–northeast(NNE)direction along the epicenter of the seismogenic fault.This rupture image corresponds to the cluster distribution of aftershocks in the NNW and SSE directions starting from the epicenter,corresponding to the distribution of recorded landslides.The earthquake occurred on the Moxi fault,located in the southeastern section of the Xianshuihe fault.The major tectonic feature in this area is the southeastward movement of the Chuandian block relative to the Bayanhar block. 展开更多
关键词 Luding M_(S)6.8 earthquake Rupture process Xianshuihe fault Southeastern margin qinghai-tibetan plateau
下载PDF
Crustal P-wave velocity structure in the northeastern margin of the Qinghai-Tibetan Plateau and insights into crustal deformation 被引量:2
5
作者 Shuaijun WANG Baojin LIU +6 位作者 Xiaofeng TIAN Baofeng LIU Xianghui SONG Xiaoguo DENG Yinan SUN Cejun MA Yudong YANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第9期1221-1237,共17页
The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high ... The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area, and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure, shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile (L1) increases from -43 km in the western margin of Ordos Block to -56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s^-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arc-like tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s^-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies (LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10-0.20 krn s^-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2 (Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L 1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation. Moreover, there are low-velocity zones with altemative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15-0.25 km s^-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 kin, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area. 展开更多
关键词 Northeastern margin of the qinghai-tibetan plateau The Ordos Block Crustal velocity structure Deep seismicsounding
原文传递
Propagation of crust deformation anomalies related to the Menyuan M_(S) 6.9 earthquake
6
作者 Anfu Niu Chong Yue +3 位作者 Zhengyi Yuan Jing Zhao Wei Yan Yuan Li 《Earthquake Research Advances》 CSCD 2023年第4期43-48,共6页
Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution cha... Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution characteristics of deformation anomalies in the northeastern margin of the Qinghai-Tibetan Plateau before and after the Menyuan M_(S)6.9 earthquake were studied by using the Fisher statistical test method. By analyzing the characteristics of these anomalies, we found that: 1) The deformation anomalies are mainly distributed in the marginal front area of the Qinghai-Tibetan Plateau, where short-term deformation anomalies are prone to occur due to a high gradient of gravity;2) The deformation anomalies along the northeastern margin of the Qinghai-Tibetan Plateau are characterized by spatial propagation, and the migration rate is about 2.4 km/d. The propagation pattern is counterclockwise, consistent with the migration direction of M_(S)≥ 6.0 earthquakes;3) The time and location of the Menyuan earthquake are related to the group migration of earthquakes with M_(S)≥ 6.0. Finally,based on the results of gravity field variation and the theory of crust stress wave, the law of deformation anomaly distribution was discussed. We suggest that both the deformation propagation along the northeastern margin of the Qinghai-Tibetan Plateau and the earthquake migration are possibly associated with the variation of the stress field caused by subsurface mass flow. 展开更多
关键词 Northeastern margin of qinghai-tibetan plateau Menyuan M_(S)6.9 earthquake Deformation propagation Earthquake migration Gravity field
下载PDF
全新世大暖期对青藏高原东北缘人类活动的影响 被引量:5
7
作者 侯光良 赖忠平 +1 位作者 孙永娟 P.Jeffrey BRANTINGHAM 《干旱区地理》 CSCD 北大核心 2013年第6期971-978,共8页
结合环境演变资料与考古发现,全新世大暖期暖湿的气候条件,促进了青藏高原东北缘古文化的发展。表现在:随着全新世大暖期暖湿环境的到来,人类活动强度大大增强;细石器文化活动模式发生显著改变,由晚更新世末期一全新世早期的短暂... 结合环境演变资料与考古发现,全新世大暖期暖湿的气候条件,促进了青藏高原东北缘古文化的发展。表现在:随着全新世大暖期暖湿环境的到来,人类活动强度大大增强;细石器文化活动模式发生显著改变,由晚更新世末期一全新世早期的短暂宿营式居住模式演变为相对固定的聚落模式;暖期中较好的水热条件,刺激了仰韶、马家窑文化在本区东部河谷地区的扩张,在暖期的6~4kaBP形成了东部河谷地带马家窑文化,西部高原细石器文化并存的区系格局,两种文化体系在共存中交流,在交流中高原细石器文化掌握了农业种植、使用了陶器,全面推动了高原土著文化进入新石器。 展开更多
关键词 全新世大暖期 青藏高原东北缘 人类活动
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部