An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model.This generic full coupled 3D exact shell model permits the...This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model.This generic full coupled 3D exact shell model permits the thermal stress investigation of laminated isotropic,composite and sandwich structures.Cylindrical and spherical panels,cylinders and plates are analyzed in orthogonal mixed curved reference coordinates.The 3D equilibrium relations and the 3D Fourier heat conduction equation for spherical shells are coupled and they trivially can be simplified in those for plates and cylindrical panels.The exponential matrix methodology is used to find the solutions of a full coupled model based on coupled differential relations with respect to the thickness coordinate.The analytical solution is based on theories of simply supported edges and harmonic relations for displacement components and sovra-temperature.The sovra-temperature magnitudes are directly applied at the outer faces through static state hypotheses.As a consequence,the sovra-temperature description is assumed to be an unknown variable of themodel and it is calculated in the sameway as the three displacements.The final systemis based on a set of coupled homogeneous differential relations of second order in the thickness coordinate.This system is reduced in a first order differential relation system by redoubling the number of unknowns.Therefore,the exponential matrix methodology is applied to calculate the solution.The temperature field effects are evaluated in the static investigation of shells and plates in terms of displacement and stress components.After an appropriate preliminary validation,new benchmarks are discussed for several thickness ratios,geometrical data,lamination sequences,materials and sovra-temperature values imposed at the outer faces.Results make evident the accordance between the uncoupled thermo-mechanical model and this new full coupled thermo-mechanical model without the need to separately solve the Fourier heat conduction relation.Both effects connected with the thickness layer and the related embedded materials are included in the conducted thermal stress analysis.展开更多
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi...This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。展开更多
This paper uses the four-variable refined plate theory (RPT) for the free vibration analysis of functionally graded material (FGM) sandwich rectangular plates. Unlike other theories, there are only four unknown fu...This paper uses the four-variable refined plate theory (RPT) for the free vibration analysis of functionally graded material (FGM) sandwich rectangular plates. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theory presented is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM facesheet and the homogeneous core and the sandwich with the homogeneous facesheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. The validity of the theory is shown by comparing the present results with those of the classical, the first-order, and the other higher-order theories. The proposed theory is accurate and simple in solving the free vibration behavior of the FGM sandwich plates.展开更多
The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral,16-degrees of freedom flat shell element (called DKQ16).The geometrical stiffness matrix was established.Compar...The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral,16-degrees of freedom flat shell element (called DKQ16).The geometrical stiffness matrix was established.Comparison of the numerical results for several typical problems shows that the DKQ16 element has a very good precision for the linear buckling problems of plates and shells.展开更多
The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the sec...The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.展开更多
The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for ...The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.展开更多
Co-N-C is a promising oxygen electrochemical catalyst due to its high stability and good durability.However,due to the limited adsorption ability improvement for oxygen-containing intermediates,it usually exhibits ina...Co-N-C is a promising oxygen electrochemical catalyst due to its high stability and good durability.However,due to the limited adsorption ability improvement for oxygen-containing intermediates,it usually exhibits inadequate catalytic activity with 2-electron pathway and high selectivity of hydrogen peroxide.Herein,the adsorption of Co-N-C to these intermediates is modulated by constructing heterostructures using transition metals and their derivatives based on d-band theory.The heterostructured nanobelts with MoC core and pomegranate-like carbon shell consisting of Co nanoparticles and N dopant(MoC/Co-N-C)are engineered to successfully modulate the d band center of active Co-N-C sites,resulting in a remarkably enhanced electrocatalysis performance.The optimally performing MoC/Co-N-C exhibits outstanding bi-catalytic activity and stability for the oxygen electrochemistry,featuring a high wave-half potential of 0.865 V for the oxygen reduction reaction(ORR)and low overpotential of 370 mV for the oxygen evolution reaction(OER)at 10 mA cm^(-2).The zinc air batteries with the MoC/Co-N-C catalyst demonstrate a large power density of 180 mW cm^(-2)and a long cycling lifespan(2000 cycles).The density functional theory calculations with Hubbard correction(DFT+U)reveal the electron transferring from Co to Mo atoms that effectively modulate the d band center of the active Co sites and achieve optimum adsorption ability with"single site double adsorption"mode.展开更多
Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, ani...Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.展开更多
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The m...The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.展开更多
Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear d...Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear deformation theories. The variationally consistent theory presented here has, in many respects,strong similarity to the classical plate theory. It does not require shear correction factors,and gives rise to such transverse shear stress variation that the transverse shear stresses vary parabolically across the thickness and satisfy shear stress free surface conditions.Material properties of the plate are assumed to be graded in the thickness direction with their distributions following a simple power-law in terms of the volume fractions of the constituents.Governing equations are derived from the principle of virtual displacements, and a closed-form solution is found for a simply supported rectangular plate subjected to sinusoidal loading by using the Navier method.Numerical results obtained by the present theory are compared with available solutions,from which it can be concluded that the proposed theory is accurate and simple in analyzing the static bending behavior of functionally graded plates.展开更多
The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure cons...The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.展开更多
The paper proposes a new approach of predicting the bifurcation points of elastic-plastic buckling of plates and shells,which is obtained from the natural combination of the Lyaponov's dy- namic criterion on stabi...The paper proposes a new approach of predicting the bifurcation points of elastic-plastic buckling of plates and shells,which is obtained from the natural combination of the Lyaponov's dy- namic criterion on stability and the modified adaptive Dynamic Relaxation(maDR)method developed recently by the authors.This new method can overcome the difficulties in the applications of the dy- namic criterion.Numerical results show that the theoretically predicted bifurcation points are in very good agreement with the corresponding experimental ones.The paper also provides a new means for further research on the plastic buckling paradox of plates and shells.展开更多
The mixed first-order shear deformation plate theory(MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasterna...The mixed first-order shear deformation plate theory(MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasternak's model or Winkler's model of elastic foundation or without any elastic foundation.Several examples are presented to verify the accuracy of the present theory.Numerical results for deflection and stresses are presented.The proposed MFPT is shown simplely to implement and capable of giving satisfactory results for shear deformable plates under static loads and resting on two-parameter elastic foundation.The results presented here show that the characteristics of deflection and stresses are significantly influenced by the elastic foundation stiffness,plate aspect ratio and side-to-thickness ratio.展开更多
The backfilling mining technology is a type of high-efficiency coal mining technology that is used to address the environmental issues caused by the caving mining technology.In this paper,the mechanical model of symme...The backfilling mining technology is a type of high-efficiency coal mining technology that is used to address the environmental issues caused by the caving mining technology.In this paper,the mechanical model of symmetrical laminated plate representing the overburden movement caused by the backfilling mining technology is established,and the governing differential equation of the motion of the overburden is derived.The boundary conditions of the mechanical model are put forward,and the analytical solution of the overburden movement and surface subsidence is obtained.The numerical model of the overburden movement and surface subsidence,under mining with backfilling,is established by means of the FLAC3D numerical software,which aims to systematically study the influence of backfilling compactness,mining thickness,and mining depth on the overburden movement and surface subsidence in backfilling mining.When the compactnessηis less than 70%,the overburden movement and surface subsidence is greater,while whenηis greater than 70%,the overburden movement and surface subsidence is reduced significantly.On this basis,the control mechanism of surface subsidence and overburden movement in backfilling mining is obtained.The suitable backfilling compactness is the key to controlling surface subsidence and overburden movement in backfilling mining.展开更多
Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak e...Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak elastic foundation are first derived by the variational principle.The polynomial particular solutions corresponding to the established model are then obtained and further employed as basis functions with the method of particular solutions(MPS)to solve the governing equations numerically.It is confirmed that for the present bending model,the new solution strategy possesses more general applicability and superior flexibility in the selection of collocation points.The effects of different boundary conditions,applied loads,and geometrical shapes on the bending properties of MEE nanoplates are evaluated by using the developed method.Some important conclusions are drawn,which should be helpful for the design and applications of electromagnetic nanoplate structures.展开更多
A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most...A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most general bending-stretching coupling and the effect of eccentricity of stiffeners are considered. The equilibrium equations, boundary conditions and the equation of compatibility are derived. The new equations of the mixed-type of stiffened laminated composite conical shells are obtained in terms of the transverse deflection and stress function. The simplified equations are also given for some commonly encountered cases.展开更多
A connection between Cheng's refined theory and Gregory's decomposed theorem is analyzed. The equivalence of the refined theory and the decomposed theorem is given. Using operator matrix determinant of partial...A connection between Cheng's refined theory and Gregory's decomposed theorem is analyzed. The equivalence of the refined theory and the decomposed theorem is given. Using operator matrix determinant of partial differential equation, Cheng gained one equation, and he substituted the sum of the general integrals of three differential equations for the solution of the equation. But he did not prove the rationality of substitute. There, a whole proof for the refined theory from Papkovich?_Neuber solution was given. At first expressions were obtained for all the displacements and stress components in term of the mid_plane displacement and its derivatives. Using Lur'e method and the theorem of appendix, the refined theory was given. At last, using basic mathematic method, the equivalence between Cheng's refined theory and Gregory's decomposed theorem was proved, i.e., Cheng's bi_harmonic equation, shear equation and transcendental equation are equivalent to Gregory's interior state, shear state and Papkovich_Fadle state, respectively.展开更多
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
文摘This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model.This generic full coupled 3D exact shell model permits the thermal stress investigation of laminated isotropic,composite and sandwich structures.Cylindrical and spherical panels,cylinders and plates are analyzed in orthogonal mixed curved reference coordinates.The 3D equilibrium relations and the 3D Fourier heat conduction equation for spherical shells are coupled and they trivially can be simplified in those for plates and cylindrical panels.The exponential matrix methodology is used to find the solutions of a full coupled model based on coupled differential relations with respect to the thickness coordinate.The analytical solution is based on theories of simply supported edges and harmonic relations for displacement components and sovra-temperature.The sovra-temperature magnitudes are directly applied at the outer faces through static state hypotheses.As a consequence,the sovra-temperature description is assumed to be an unknown variable of themodel and it is calculated in the sameway as the three displacements.The final systemis based on a set of coupled homogeneous differential relations of second order in the thickness coordinate.This system is reduced in a first order differential relation system by redoubling the number of unknowns.Therefore,the exponential matrix methodology is applied to calculate the solution.The temperature field effects are evaluated in the static investigation of shells and plates in terms of displacement and stress components.After an appropriate preliminary validation,new benchmarks are discussed for several thickness ratios,geometrical data,lamination sequences,materials and sovra-temperature values imposed at the outer faces.Results make evident the accordance between the uncoupled thermo-mechanical model and this new full coupled thermo-mechanical model without the need to separately solve the Fourier heat conduction relation.Both effects connected with the thickness layer and the related embedded materials are included in the conducted thermal stress analysis.
文摘This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。
文摘This paper uses the four-variable refined plate theory (RPT) for the free vibration analysis of functionally graded material (FGM) sandwich rectangular plates. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theory presented is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM facesheet and the homogeneous core and the sandwich with the homogeneous facesheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. The validity of the theory is shown by comparing the present results with those of the classical, the first-order, and the other higher-order theories. The proposed theory is accurate and simple in solving the free vibration behavior of the FGM sandwich plates.
文摘The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral,16-degrees of freedom flat shell element (called DKQ16).The geometrical stiffness matrix was established.Comparison of the numerical results for several typical problems shows that the DKQ16 element has a very good precision for the linear buckling problems of plates and shells.
基金theResearchFoundationofEducationalCommitteeofYunnanProvince China
文摘The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.
基金the University of Kashan.(Grant Number:467893/0655)。
文摘The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.
基金financially supported by the National Natural Science Foundation of China(No.21975163)the Shenzhen Innovative Research Team Program(KQTD20190929173914967)the Senior Talent Research Start-up Fund of Shenzhen University(000265)。
文摘Co-N-C is a promising oxygen electrochemical catalyst due to its high stability and good durability.However,due to the limited adsorption ability improvement for oxygen-containing intermediates,it usually exhibits inadequate catalytic activity with 2-electron pathway and high selectivity of hydrogen peroxide.Herein,the adsorption of Co-N-C to these intermediates is modulated by constructing heterostructures using transition metals and their derivatives based on d-band theory.The heterostructured nanobelts with MoC core and pomegranate-like carbon shell consisting of Co nanoparticles and N dopant(MoC/Co-N-C)are engineered to successfully modulate the d band center of active Co-N-C sites,resulting in a remarkably enhanced electrocatalysis performance.The optimally performing MoC/Co-N-C exhibits outstanding bi-catalytic activity and stability for the oxygen electrochemistry,featuring a high wave-half potential of 0.865 V for the oxygen reduction reaction(ORR)and low overpotential of 370 mV for the oxygen evolution reaction(OER)at 10 mA cm^(-2).The zinc air batteries with the MoC/Co-N-C catalyst demonstrate a large power density of 180 mW cm^(-2)and a long cycling lifespan(2000 cycles).The density functional theory calculations with Hubbard correction(DFT+U)reveal the electron transferring from Co to Mo atoms that effectively modulate the d band center of the active Co sites and achieve optimum adsorption ability with"single site double adsorption"mode.
文摘Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.
文摘The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.
文摘Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear deformation theories. The variationally consistent theory presented here has, in many respects,strong similarity to the classical plate theory. It does not require shear correction factors,and gives rise to such transverse shear stress variation that the transverse shear stresses vary parabolically across the thickness and satisfy shear stress free surface conditions.Material properties of the plate are assumed to be graded in the thickness direction with their distributions following a simple power-law in terms of the volume fractions of the constituents.Governing equations are derived from the principle of virtual displacements, and a closed-form solution is found for a simply supported rectangular plate subjected to sinusoidal loading by using the Navier method.Numerical results obtained by the present theory are compared with available solutions,from which it can be concluded that the proposed theory is accurate and simple in analyzing the static bending behavior of functionally graded plates.
基金supported by National Natural Science Foundation of China(Grants No.50875174,51175347)Innovation Program of Shanghai Municipal Education Commission(Grant No.13ZZ114)Capacity Building Project of Local University of Shanghai Municipal Science and Technology Commission(Grant No.13160502500)
文摘The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.
文摘The paper proposes a new approach of predicting the bifurcation points of elastic-plastic buckling of plates and shells,which is obtained from the natural combination of the Lyaponov's dy- namic criterion on stability and the modified adaptive Dynamic Relaxation(maDR)method developed recently by the authors.This new method can overcome the difficulties in the applications of the dy- namic criterion.Numerical results show that the theoretically predicted bifurcation points are in very good agreement with the corresponding experimental ones.The paper also provides a new means for further research on the plastic buckling paradox of plates and shells.
文摘The mixed first-order shear deformation plate theory(MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasternak's model or Winkler's model of elastic foundation or without any elastic foundation.Several examples are presented to verify the accuracy of the present theory.Numerical results for deflection and stresses are presented.The proposed MFPT is shown simplely to implement and capable of giving satisfactory results for shear deformable plates under static loads and resting on two-parameter elastic foundation.The results presented here show that the characteristics of deflection and stresses are significantly influenced by the elastic foundation stiffness,plate aspect ratio and side-to-thickness ratio.
基金supported by the National Natural Science Foundation of China(51504081,51704095,51374201)the National Key Research and Development Program of China(2017YFC0805202)+3 种基金the Scientific Research Key Project Fund of Education Department of Henan Province(18A440012,14A440001)the Research Fund of Henan Key Laboratory for Green and Efficient Mining and Comprehensive Utilization of Mineral Resources(S201619)the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining(13KF02)the Ph.D.Programs Foundation of Henan Polytechnic University(B2014-50,B2016-67).
文摘The backfilling mining technology is a type of high-efficiency coal mining technology that is used to address the environmental issues caused by the caving mining technology.In this paper,the mechanical model of symmetrical laminated plate representing the overburden movement caused by the backfilling mining technology is established,and the governing differential equation of the motion of the overburden is derived.The boundary conditions of the mechanical model are put forward,and the analytical solution of the overburden movement and surface subsidence is obtained.The numerical model of the overburden movement and surface subsidence,under mining with backfilling,is established by means of the FLAC3D numerical software,which aims to systematically study the influence of backfilling compactness,mining thickness,and mining depth on the overburden movement and surface subsidence in backfilling mining.When the compactnessηis less than 70%,the overburden movement and surface subsidence is greater,while whenηis greater than 70%,the overburden movement and surface subsidence is reduced significantly.On this basis,the control mechanism of surface subsidence and overburden movement in backfilling mining is obtained.The suitable backfilling compactness is the key to controlling surface subsidence and overburden movement in backfilling mining.
基金Project supported by the National Natural Science Foundation of China(Nos.11872257 and 11572358)the German Research Foundation(No.ZH 15/14-1)。
文摘Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak elastic foundation are first derived by the variational principle.The polynomial particular solutions corresponding to the established model are then obtained and further employed as basis functions with the method of particular solutions(MPS)to solve the governing equations numerically.It is confirmed that for the present bending model,the new solution strategy possesses more general applicability and superior flexibility in the selection of collocation points.The effects of different boundary conditions,applied loads,and geometrical shapes on the bending properties of MEE nanoplates are evaluated by using the developed method.Some important conclusions are drawn,which should be helpful for the design and applications of electromagnetic nanoplate structures.
文摘A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most general bending-stretching coupling and the effect of eccentricity of stiffeners are considered. The equilibrium equations, boundary conditions and the equation of compatibility are derived. The new equations of the mixed-type of stiffened laminated composite conical shells are obtained in terms of the transverse deflection and stress function. The simplified equations are also given for some commonly encountered cases.
文摘A connection between Cheng's refined theory and Gregory's decomposed theorem is analyzed. The equivalence of the refined theory and the decomposed theorem is given. Using operator matrix determinant of partial differential equation, Cheng gained one equation, and he substituted the sum of the general integrals of three differential equations for the solution of the equation. But he did not prove the rationality of substitute. There, a whole proof for the refined theory from Papkovich?_Neuber solution was given. At first expressions were obtained for all the displacements and stress components in term of the mid_plane displacement and its derivatives. Using Lur'e method and the theorem of appendix, the refined theory was given. At last, using basic mathematic method, the equivalence between Cheng's refined theory and Gregory's decomposed theorem was proved, i.e., Cheng's bi_harmonic equation, shear equation and transcendental equation are equivalent to Gregory's interior state, shear state and Papkovich_Fadle state, respectively.