Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application ...Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application in the future,the thermal stability of this substance during storage,transportation,and use will become quite important.Thus,in this work,the thermal decomposition behavior,thermal decomposition kinetics,and thermal hazard of ADCA were investigated.Experiments were conducted by using a SENSYS evo DSC device.A combination of differential iso-conversion method,compensation parameter method,and nonlinear fitting evaluation were also used to analyze thermal kinetics and mechanism of ADCA decomposition.The results show that when conversion rate α increases,the activation energies of ADCA's first and main decomposition peaks fall.The amount of heat released during decomposition varies between 182.46 and 231.16 J·g^(-1).The proposed kinetic equation is based on the Avrami-Erofeev model,which is consistent with the decomposition progress.Applying the Frank-Kamenetskii model,a calculated self-accelerating decomposition temperature of 287.0℃is obtained.展开更多
Fe/N-based biomass porous carbon composite(Fe/N-p Carbon) was prepared by a facile high-temperature carbonization method from biomass,and the effect of Fe/N-p Carbon on the thermal decomposition of energetic molecular...Fe/N-based biomass porous carbon composite(Fe/N-p Carbon) was prepared by a facile high-temperature carbonization method from biomass,and the effect of Fe/N-p Carbon on the thermal decomposition of energetic molecular perovskite-based material DAP-4 was studied.Biomass porous carbonaceous materials was considered as the micro/nano support layers for in situ deposition of Fe/N precursors.Fe/Np Carbon was prepared simply by the high-temperature carbonization method.It was found that it showed the inherent catalysis properties for thermal decomposition of DAP-4.The heat release of DAP-4/Fe/N-p Carbon by DSC curves tested had increased slightly,compared from DAP-4/Fe/N-p Carbon-0.The decomposition temperature peak of DAP-4 at the presence of Fe/N-p Carbon had reduced by 79°C from384.4°C(pure DAP-4) to 305.4°C(DAP-4/Fe/N-p Carbon-3).The apparent activation energy of DAP-4thermal decomposition also had decreased by 29.1 J/mol.The possible catalytic decomposition mechanism of DAP-4 with Fe/N-p Carbon was proposed.展开更多
2,6-bis(picrylamino)-3,5-dinitropyridine(PYX)has excellent thermostability,which makes its thermal decomposition mechanism receive much attention.In this paper,the mechanism of PYX thermal decomposition was investigat...2,6-bis(picrylamino)-3,5-dinitropyridine(PYX)has excellent thermostability,which makes its thermal decomposition mechanism receive much attention.In this paper,the mechanism of PYX thermal decomposition was investigated thoroughly by the ReaxFF-lg force field combined with DFT-B3LYP(6-311++G)method.The detailed decomposition mechanism,small-molecule product evolution,and cluster evolution of PYX were mainly analyzed.In the initial stage of decomposition,the intramolecular hydrogen transfer reaction and the formation of dimerized clusters are earlier than the denitration reaction.With the progress of the reaction,one side of the bitter amino group is removed from the pyridine ring,and then the pyridine ring is cleaved.The final products produced in the thermal decomposition process are CO_(2),H_(2)O,N_(2),and H_(2).Among them,H_(2)O has the earliest generation time,and the reaction rate constant(k_(3))is the largest.Many clusters are formed during the decomposition of PYX,and the formation,aggregation,and decomposition of these clusters are strongly affected by temperature.At low temperatures(2500 K-2750 K),many clusters are formed.At high temperatures(2750 K-3250 K),the clusters aggregate to form larger clusters.At 3500 K,the large clusters decompose and become small.In the late stage of the reaction,H and N in the clusters escaped almost entirely,but more O was trapped in the clusters,which affected the auto-oxidation process of PYX.PYX's initial decomposition activation energy(E_(a))was calculated to be 126.58 kJ/mol.This work contributes to a theoretical understanding of PYX's entire thermal decomposition process.展开更多
Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the the...Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the thermal decomposition of ammonium perchlorate(NH_(4)ClO_(4),AP)-based energetic molecular perovskites(AP-based energetic molecular perovskites).The morphology and structure of the MgCo_(2)O_(4) nanosheets were characterized.And their catalytic effect on the thermal decomposition of AP-based energetic molecular perovskites(H_2pz)[NH_(4)(ClO_(4))_(3)](PAP-4),(H_2dabco)[NH_(4)(ClO_(4))_(3)](DAP-4),(H_2mpz)[NH_(4)(ClO_(4))_(3)](PAP-M_(4)),and (H_2hpz)[NH_(4)(ClO_(4))_(3)](PAP-H_(4)) was analyzed.The results showed that MgCo_(2)O_(4) nanosheets had excellent intrinsically catalytic performance towards enhancing the thermal decomposition of AP-based energetic molecular perovskites.After adding MgCo_(2)O_(4) nanosheets,the thermal decomposition peak temperatures of PAP-4,DAP-4,PAP-M_(4),and PAP-H_(4) had been reduced by35.7℃,48.4℃,37.9℃,and 43.6℃,respectively.And the activation energy(Ea)of the thermal decomposition of AP-based energetic molecular perovskites had been reduced,the Eaof PAP-H_(4) decreased by 46.4 kJ/mol at most among them.The catalytic mechanism of MgCo_(2)O_(4) nanosheets for AP-based energetic molecular perovskites is analyzed.This work provides a reference for the future application of AP-based energetic molecular perovskites.展开更多
3,4-Dinitrofurazanfuroxan(DNTF),as a high-energy-density material,features good thermal stability and wide applications.This study aimed to elucidate the thermal decomposition mechanism of DNTF combined with nitrogen-...3,4-Dinitrofurazanfuroxan(DNTF),as a high-energy-density material,features good thermal stability and wide applications.This study aimed to elucidate the thermal decomposition mechanism of DNTF combined with nitrogen-rich compounds containing N-H.The thermal stabilities of DNTF and its hybrid systems were investigated using differential thermal analysis/thermogravimetry(TG),vacuum stability test,and accelerating rate calorimetry under isothermal,non-isothermal,and adiabatic conditions,respectively.Results showed that the thermal stability and thermal safety of DNTF significantly decreased after combining with nitrogen-rich compounds containing N-H.Calculation results showed that the activation energy of the DNTF hybrid systems was significantly lower than that of DNTF.The TGIR was used to monitor the generation of fugitive gases during the thermal decomposition of the DNTF/5-aminotetrazole(5-ATZ)hybrid.Moreover,the nitrogen-rich molecules containing N-H interacted extensively with DNTF,and this interaction accelerated the thermal degradation of DNTF.展开更多
Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the exist...Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the existence of aluminum oxide film on its surface reduces the heat release performance of the aluminum powder,which greatly limits its application.Hence,this paper used iron,a component of solid propellant,to coat micron-Al and nano-Al to improve the heat release efficiency and reactivity of Al powder.SEM,TEM,EDS,XRD,XPS,and BET were used to investigate the morphological structure and properties of pure Al and Fe/Al composite fuels of different sizes.The results show that Fe was uniformly coated on the surface of Al powder.There was no reaction between Fe and Al,and Fe/Al composite fuels had a larger specific surface area than pure Al,which could better improve the reactivity of pure Al.Besides,the catalytic effects of pure Al and Fe/Al composite fuels of different sizes on ammonium perchlorate and ammonium nitrate were explored.The results show that the catalysis of pure Al powder could be greatly improved by coating Fe on the surface of Al powder.Especially,the micron-Fe/Al composite fuel had a higher catalytic effect than the pure nano-Al powder.Hence,Fe/Al composite fuels are expected to be widely used in solid propellants.展开更多
Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behav...Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behavior of oleuropein from the olive resource were researched by thermogravimetric theoretical analysis methods and non-isothermal kinetics simulation.The results of thermogravimetry analysis showed the whole thermal decomposi-tion process of oleuropein involved two stages,with 21.22%of residue.It was also revealed that high heating rates of more than 20 K min^(-1) led to significant thermal hysteresis and inhibited the whole thermal decomposition behavior of oleuropein.Moreover,an investigation of the thermal decomposition kinetics indicated that the non-isothermal decomposition behavior followed a D3 model during thefirst stage(three-dimensional diffusion,Jander equation)and a D1 model in the second stage(one-dimensional diffusion).For thefirst and second ther-mal decomposition stages,the Kissinger,Friedman,Flynn-Wall-Ozawa,and Coats–Redfern four methods were applied to determine the activation energy(E=143.72 and 247.01 kJ mol^(-1))and Arrhenius preexponential factor(ln A=26.34 and 42.45 min^(-1)),respectively.Therefore,the study will provide good theoretical guidance for ther-mal stability and thermal transformation application of oleuropein.It will be suitable for low-temperature appli-cations in the cosmetic,food supplement and pharmaceutical industries.展开更多
High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis pro...High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.展开更多
Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O ...Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O from room temperature to 900 °C was investigated and intermediates and final solid products were characterized by FTIR and DSC-TG.Results show that the thermal decomposition process consists of five consecutive stage reactions.Flynn-Wall-Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS) methods were implemented for the calculation of energy of activation(E),and the results show that E depends on α,demonstrating that the decomposition reaction process of the lanthanum oxalate is of a complex kinetic mechanism.The most probable mechanistic function,G(α)=[1-(1+α)1/3]2,and the kinetic parameters were obtained by multivariate non-linear regression analysis method.The average E-value that is compatible with the kinetic model is close to value which was obtained by FWO and KAS methods.The fitting curve matches the original TG curve very well.展开更多
A separation method for W and Mo from peroxoacids solution by thermal decomposition wasstudied. Thermal decomposition of peroxotungstic acid and peroxomolybdic acid was investigated respectively. The results confirmed...A separation method for W and Mo from peroxoacids solution by thermal decomposition wasstudied. Thermal decomposition of peroxotungstic acid and peroxomolybdic acid was investigated respectively. The results confirmed that peroxomolybdic acid showed a preferable stability compared with peroxotungstic acid. This thermal stability difference was the basic principle of theseparationof W and Mo. Experiments were performed to study the effects of temperature, stirring speed, free acid concentration and Mo concentration on the separation efficiency. The results indicated that peroxotungstic acid decomposed into tungstic acid(H2WO4) and precipitated selectively,while Mo was rejected in aqueous solution,realizing good separation of W and Mo. The separation factorof W and Moreached 112 under the studied conditions, which indicated that this method has potential for use in separating W and Mo.展开更多
The thermal decomposition of n-heptane is an important process in petroleum industry. The theoretical investigations show that the main products are C2H4, H2, CH4, and C3H6, which agree well with the experimental resu...The thermal decomposition of n-heptane is an important process in petroleum industry. The theoretical investigations show that the main products are C2H4, H2, CH4, and C3H6, which agree well with the experimental results. The products populations depend strongly on the temperature. The quantity of ethylene increases quickly as the temperature goes up. The conversion of n-heptane and the mole fraction of primary products from reactive molecular dynamic and chemical kinetic modeling are compared with each other. We also investigated the pre-exponential factor and activation energy for thermal decomposition of n-heptane by kinetic analysis from the reactive force field simulations, which were extracted to be 1.78×10^14 s^-1 and 47.32 kcal/mol respectively.展开更多
Fibrous particulate precursor was obtained by precipitation transformation in the ternary solution system of ammonium oxalate, nickel chloride and ammonia. The composition and morphology of precursor were characterize...Fibrous particulate precursor was obtained by precipitation transformation in the ternary solution system of ammonium oxalate, nickel chloride and ammonia. The composition and morphology of precursor were characterized by XRD, SEM, IR and DTA/TGA analyses. The results show that the chemical composition and morphology of precursor precipitates at pH=8.4?8.8 are different from those of precursor precipitates at pH=6.0, and the mechanisms of the thermal decomposition of the precursors are different. The effects of various conditions in the process of thermal decomposition, including precursor morphology, atmosphere, temperature and time on the morphology and dispersion degree of obtained nickel powders were studied in detail. The final product inherits the morphology of precursor when the thermal decomposition is conducted under a weakly reducing atmosphere at temperature range of 400?440 °C for 30 min. Fibrous nickel powder can be produced with good dispersion, and its shape changes from smooth, straight and compact fiber into loose and curved fiber with rough surface.展开更多
The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most ...The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.展开更多
The thermal decomposition process of (NH4)3AlF6 was studied by DTA-TGA method and the related thermodynamic data were obtained. The results show that AlF3 is obtained after three-step decomposition reaction of (NH4...The thermal decomposition process of (NH4)3AlF6 was studied by DTA-TGA method and the related thermodynamic data were obtained. The results show that AlF3 is obtained after three-step decomposition reaction of (NH4)3AlF6, and the solid products of the first two decomposition reactions are NH4AlF4 and AlF3(NH4F)0.69, respectively. The three reactions occur at 194.9, 222.5 and 258.4 ℃, respectively. Gibbs free energy changes of pertinent materials at the reaction temperatures were calculated. Enthalpy and entropy changes of the three reactions were analyzed by DSC method. Anhydrous aluminum fluoride was prepared. The XRD analysis and mass loss calculation show that AlF3 with high purity can be obtained by heating (NH4)3AlF6 at 400 ℃ for 3 h.展开更多
Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grindin...Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity.展开更多
The thermal behaviors and burning characteristics of reconstituted tobacco (RT) are strongly related with evolved gaseous products. The effect of ammonium polyphosphate (APP) as an additive of RT on the pyrolysis ...The thermal behaviors and burning characteristics of reconstituted tobacco (RT) are strongly related with evolved gaseous products. The effect of ammonium polyphosphate (APP) as an additive of RT on the pyrolysis behavior and CO evolution was studied, emphasizing the role of heating velocity in reducing CO delivery of the mainstream smoke by APP. Thermogravimetric analysis (TGA) was employed to investigate the influence of APP on RT thermal behavior. Slow and flash pyrolysis of RT were compared to discuss the role of heating rate in decreasing CO by APP. TGA results demonstrated that, in dependence on APP concentration, APP influenced exothermal amount and weight loss rate during RT thermal decomposition, promoted the formation of char and retarded the thermal decomposition of RT. In addition, APP had a considerable influence on the evolution of gaseous products during thermal decomposition of RT. Both CO delivery per cigarette and that per puff in the smoking process were significantly reduced in dependence on APP content in RT. Comparative analysis of CO evolution patterns in the flash and slow pyrolysis elucidated that heating rate played a key role in decreasing CO evolution by APP. The results suggest that APP is a potential burning additive for controlling CO delivery in mainstream smoke of RT.展开更多
Ammonium dinitramide [NH4 N(NO_2)2, ADN] is considered as a possible replacement for ammonium perchlorate(AP) in nearly all kind of solid rocket propulsions in the coming future. The reason to use ADN instead of AP in...Ammonium dinitramide [NH4 N(NO_2)2, ADN] is considered as a possible replacement for ammonium perchlorate(AP) in nearly all kind of solid rocket propulsions in the coming future. The reason to use ADN instead of AP in solid rocket propulsion is because of its harmless combustion products, along with its capacity to generate high specific impulse(Isp). ADN is fairly a new member in the solid oxidizer community and is considered under green energetic material(GEM). Application and feasible utilization of ADN as an oxidizer for composite solid propellants(CSP's) requires complete knowledge of its thermal decomposition processes along with its combustion behavior. A detailed overview on the physical and chemical properties, thermal decomposition, and combustion behavior of ADN and ADN based propellants has been discussed in this paper. Catalytic effect on thermal decomposition, combustion wave structure, and burning rate of ADN is also discussed.展开更多
This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as poly...This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.展开更多
Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination te...Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.展开更多
Alkaline earth benzoates were synthesized using hydrothermal reaction. The complexes were characterized by elemental analysis, IR, X ray powder diffraction. All of them are monoclinic and have layered structure. The ...Alkaline earth benzoates were synthesized using hydrothermal reaction. The complexes were characterized by elemental analysis, IR, X ray powder diffraction. All of them are monoclinic and have layered structure. The mechanism of thermal decomposition of alkaline earth benzoates was studied by using TG, DTA, IR and gas chromatography mass spectrometry. The thermal decomposition of alkaline earth benzoates in nitrogen proceeded in one or two stages: they decomposed to form MCO 3 (M=Ca,Sr,Ba) or MgO and organic compounds, respectively. The organic compounds obtained from decomposition reaction are mainly benzophenone, triphenylmethane and so on.展开更多
基金supported by National Natural Science Foundation of China(51974166).
文摘Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application in the future,the thermal stability of this substance during storage,transportation,and use will become quite important.Thus,in this work,the thermal decomposition behavior,thermal decomposition kinetics,and thermal hazard of ADCA were investigated.Experiments were conducted by using a SENSYS evo DSC device.A combination of differential iso-conversion method,compensation parameter method,and nonlinear fitting evaluation were also used to analyze thermal kinetics and mechanism of ADCA decomposition.The results show that when conversion rate α increases,the activation energies of ADCA's first and main decomposition peaks fall.The amount of heat released during decomposition varies between 182.46 and 231.16 J·g^(-1).The proposed kinetic equation is based on the Avrami-Erofeev model,which is consistent with the decomposition progress.Applying the Frank-Kamenetskii model,a calculated self-accelerating decomposition temperature of 287.0℃is obtained.
基金National Natural Science Foundation of China(Grant No.21975227)the Found of National defence Science and Technology Key Laboratory (Grant No.6142602210306)。
文摘Fe/N-based biomass porous carbon composite(Fe/N-p Carbon) was prepared by a facile high-temperature carbonization method from biomass,and the effect of Fe/N-p Carbon on the thermal decomposition of energetic molecular perovskite-based material DAP-4 was studied.Biomass porous carbonaceous materials was considered as the micro/nano support layers for in situ deposition of Fe/N precursors.Fe/Np Carbon was prepared simply by the high-temperature carbonization method.It was found that it showed the inherent catalysis properties for thermal decomposition of DAP-4.The heat release of DAP-4/Fe/N-p Carbon by DSC curves tested had increased slightly,compared from DAP-4/Fe/N-p Carbon-0.The decomposition temperature peak of DAP-4 at the presence of Fe/N-p Carbon had reduced by 79°C from384.4°C(pure DAP-4) to 305.4°C(DAP-4/Fe/N-p Carbon-3).The apparent activation energy of DAP-4thermal decomposition also had decreased by 29.1 J/mol.The possible catalytic decomposition mechanism of DAP-4 with Fe/N-p Carbon was proposed.
基金funded by the National Natural Science Foundation of China(Grant No.21975024)。
文摘2,6-bis(picrylamino)-3,5-dinitropyridine(PYX)has excellent thermostability,which makes its thermal decomposition mechanism receive much attention.In this paper,the mechanism of PYX thermal decomposition was investigated thoroughly by the ReaxFF-lg force field combined with DFT-B3LYP(6-311++G)method.The detailed decomposition mechanism,small-molecule product evolution,and cluster evolution of PYX were mainly analyzed.In the initial stage of decomposition,the intramolecular hydrogen transfer reaction and the formation of dimerized clusters are earlier than the denitration reaction.With the progress of the reaction,one side of the bitter amino group is removed from the pyridine ring,and then the pyridine ring is cleaved.The final products produced in the thermal decomposition process are CO_(2),H_(2)O,N_(2),and H_(2).Among them,H_(2)O has the earliest generation time,and the reaction rate constant(k_(3))is the largest.Many clusters are formed during the decomposition of PYX,and the formation,aggregation,and decomposition of these clusters are strongly affected by temperature.At low temperatures(2500 K-2750 K),many clusters are formed.At high temperatures(2750 K-3250 K),the clusters aggregate to form larger clusters.At 3500 K,the large clusters decompose and become small.In the late stage of the reaction,H and N in the clusters escaped almost entirely,but more O was trapped in the clusters,which affected the auto-oxidation process of PYX.PYX's initial decomposition activation energy(E_(a))was calculated to be 126.58 kJ/mol.This work contributes to a theoretical understanding of PYX's entire thermal decomposition process.
基金the National Natural Science Foundation of China(Grant No.21975227)the Found of National defence Sci&Tech Laboratory(Grant No.6142602210306)。
文摘Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the thermal decomposition of ammonium perchlorate(NH_(4)ClO_(4),AP)-based energetic molecular perovskites(AP-based energetic molecular perovskites).The morphology and structure of the MgCo_(2)O_(4) nanosheets were characterized.And their catalytic effect on the thermal decomposition of AP-based energetic molecular perovskites(H_2pz)[NH_(4)(ClO_(4))_(3)](PAP-4),(H_2dabco)[NH_(4)(ClO_(4))_(3)](DAP-4),(H_2mpz)[NH_(4)(ClO_(4))_(3)](PAP-M_(4)),and (H_2hpz)[NH_(4)(ClO_(4))_(3)](PAP-H_(4)) was analyzed.The results showed that MgCo_(2)O_(4) nanosheets had excellent intrinsically catalytic performance towards enhancing the thermal decomposition of AP-based energetic molecular perovskites.After adding MgCo_(2)O_(4) nanosheets,the thermal decomposition peak temperatures of PAP-4,DAP-4,PAP-M_(4),and PAP-H_(4) had been reduced by35.7℃,48.4℃,37.9℃,and 43.6℃,respectively.And the activation energy(Ea)of the thermal decomposition of AP-based energetic molecular perovskites had been reduced,the Eaof PAP-H_(4) decreased by 46.4 kJ/mol at most among them.The catalytic mechanism of MgCo_(2)O_(4) nanosheets for AP-based energetic molecular perovskites is analyzed.This work provides a reference for the future application of AP-based energetic molecular perovskites.
基金the financially sponsor of the Natural Science Foundation of China(Grant No.51972278)the Outstanding Youth Science and Technology Talents Program of Sichuan(Grant No.19JCQN0085)the Open Project of State Key Laboratory of Environment-friendly Energy Materials(Southwest University of Science and Technology,Grant No.21fksy19)。
文摘3,4-Dinitrofurazanfuroxan(DNTF),as a high-energy-density material,features good thermal stability and wide applications.This study aimed to elucidate the thermal decomposition mechanism of DNTF combined with nitrogen-rich compounds containing N-H.The thermal stabilities of DNTF and its hybrid systems were investigated using differential thermal analysis/thermogravimetry(TG),vacuum stability test,and accelerating rate calorimetry under isothermal,non-isothermal,and adiabatic conditions,respectively.Results showed that the thermal stability and thermal safety of DNTF significantly decreased after combining with nitrogen-rich compounds containing N-H.Calculation results showed that the activation energy of the DNTF hybrid systems was significantly lower than that of DNTF.The TGIR was used to monitor the generation of fugitive gases during the thermal decomposition of the DNTF/5-aminotetrazole(5-ATZ)hybrid.Moreover,the nitrogen-rich molecules containing N-H interacted extensively with DNTF,and this interaction accelerated the thermal degradation of DNTF.
文摘Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the existence of aluminum oxide film on its surface reduces the heat release performance of the aluminum powder,which greatly limits its application.Hence,this paper used iron,a component of solid propellant,to coat micron-Al and nano-Al to improve the heat release efficiency and reactivity of Al powder.SEM,TEM,EDS,XRD,XPS,and BET were used to investigate the morphological structure and properties of pure Al and Fe/Al composite fuels of different sizes.The results show that Fe was uniformly coated on the surface of Al powder.There was no reaction between Fe and Al,and Fe/Al composite fuels had a larger specific surface area than pure Al,which could better improve the reactivity of pure Al.Besides,the catalytic effects of pure Al and Fe/Al composite fuels of different sizes on ammonium perchlorate and ammonium nitrate were explored.The results show that the catalysis of pure Al powder could be greatly improved by coating Fe on the surface of Al powder.Especially,the micron-Fe/Al composite fuel had a higher catalytic effect than the pure nano-Al powder.Hence,Fe/Al composite fuels are expected to be widely used in solid propellants.
基金This work was funded by Guangdong Basic and Applied Basic Research Foundation(No.2019A1515111159)Characteristic Innovative Projects for Education Department of Guangdong Province 2021 Year(No.2021KTSCX302).
文摘Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behavior of oleuropein from the olive resource were researched by thermogravimetric theoretical analysis methods and non-isothermal kinetics simulation.The results of thermogravimetry analysis showed the whole thermal decomposi-tion process of oleuropein involved two stages,with 21.22%of residue.It was also revealed that high heating rates of more than 20 K min^(-1) led to significant thermal hysteresis and inhibited the whole thermal decomposition behavior of oleuropein.Moreover,an investigation of the thermal decomposition kinetics indicated that the non-isothermal decomposition behavior followed a D3 model during thefirst stage(three-dimensional diffusion,Jander equation)and a D1 model in the second stage(one-dimensional diffusion).For thefirst and second ther-mal decomposition stages,the Kissinger,Friedman,Flynn-Wall-Ozawa,and Coats–Redfern four methods were applied to determine the activation energy(E=143.72 and 247.01 kJ mol^(-1))and Arrhenius preexponential factor(ln A=26.34 and 42.45 min^(-1)),respectively.Therefore,the study will provide good theoretical guidance for ther-mal stability and thermal transformation application of oleuropein.It will be suitable for low-temperature appli-cations in the cosmetic,food supplement and pharmaceutical industries.
基金Project(ZDSY20120619093952884)supported by Shenzhen Strategic New Industry Development,China
文摘High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.
基金Project (IRT0974) supported by Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject (50974098) supported by the National Natural Science Foundation of China
文摘Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O from room temperature to 900 °C was investigated and intermediates and final solid products were characterized by FTIR and DSC-TG.Results show that the thermal decomposition process consists of five consecutive stage reactions.Flynn-Wall-Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS) methods were implemented for the calculation of energy of activation(E),and the results show that E depends on α,demonstrating that the decomposition reaction process of the lanthanum oxalate is of a complex kinetic mechanism.The most probable mechanistic function,G(α)=[1-(1+α)1/3]2,and the kinetic parameters were obtained by multivariate non-linear regression analysis method.The average E-value that is compatible with the kinetic model is close to value which was obtained by FWO and KAS methods.The fitting curve matches the original TG curve very well.
基金Project(51334008)supported by the National Natural Science Foundation of ChinaProject(2010FJ1011)supported by the Key Program of Science and Technology of Hunan Province,China
文摘A separation method for W and Mo from peroxoacids solution by thermal decomposition wasstudied. Thermal decomposition of peroxotungstic acid and peroxomolybdic acid was investigated respectively. The results confirmed that peroxomolybdic acid showed a preferable stability compared with peroxotungstic acid. This thermal stability difference was the basic principle of theseparationof W and Mo. Experiments were performed to study the effects of temperature, stirring speed, free acid concentration and Mo concentration on the separation efficiency. The results indicated that peroxotungstic acid decomposed into tungstic acid(H2WO4) and precipitated selectively,while Mo was rejected in aqueous solution,realizing good separation of W and Mo. The separation factorof W and Moreached 112 under the studied conditions, which indicated that this method has potential for use in separating W and Mo.
基金This work was supported by the National Natural Science Foundation of China (No.21103117).
文摘The thermal decomposition of n-heptane is an important process in petroleum industry. The theoretical investigations show that the main products are C2H4, H2, CH4, and C3H6, which agree well with the experimental results. The products populations depend strongly on the temperature. The quantity of ethylene increases quickly as the temperature goes up. The conversion of n-heptane and the mole fraction of primary products from reactive molecular dynamic and chemical kinetic modeling are compared with each other. We also investigated the pre-exponential factor and activation energy for thermal decomposition of n-heptane by kinetic analysis from the reactive force field simulations, which were extracted to be 1.78×10^14 s^-1 and 47.32 kcal/mol respectively.
基金Project(2010FJ3012)supported by the Science and Technology Plan Foundation of Hunan Province,China
文摘Fibrous particulate precursor was obtained by precipitation transformation in the ternary solution system of ammonium oxalate, nickel chloride and ammonia. The composition and morphology of precursor were characterized by XRD, SEM, IR and DTA/TGA analyses. The results show that the chemical composition and morphology of precursor precipitates at pH=8.4?8.8 are different from those of precursor precipitates at pH=6.0, and the mechanisms of the thermal decomposition of the precursors are different. The effects of various conditions in the process of thermal decomposition, including precursor morphology, atmosphere, temperature and time on the morphology and dispersion degree of obtained nickel powders were studied in detail. The final product inherits the morphology of precursor when the thermal decomposition is conducted under a weakly reducing atmosphere at temperature range of 400?440 °C for 30 min. Fibrous nickel powder can be produced with good dispersion, and its shape changes from smooth, straight and compact fiber into loose and curved fiber with rough surface.
基金Project(51374058)supported by the National Natural Science Foundation of China
文摘The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.
基金Project(51004034)supported by the National Natural Science Foundation of ChinaProject(N090302009)supported by the Fundamental Research Funds for the Central Universities,China
文摘The thermal decomposition process of (NH4)3AlF6 was studied by DTA-TGA method and the related thermodynamic data were obtained. The results show that AlF3 is obtained after three-step decomposition reaction of (NH4)3AlF6, and the solid products of the first two decomposition reactions are NH4AlF4 and AlF3(NH4F)0.69, respectively. The three reactions occur at 194.9, 222.5 and 258.4 ℃, respectively. Gibbs free energy changes of pertinent materials at the reaction temperatures were calculated. Enthalpy and entropy changes of the three reactions were analyzed by DSC method. Anhydrous aluminum fluoride was prepared. The XRD analysis and mass loss calculation show that AlF3 with high purity can be obtained by heating (NH4)3AlF6 at 400 ℃ for 3 h.
基金Project (BK2009379) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject (1006-56XNA12069) supported by the Nanjing University of Aeronautics and Astronautics Research Funding, China+3 种基金Projects (51172108, 91023020) supported by the National Natural Science Foundation of ChinaProject (IRT0968) supported by the Program for Changjiang Scholars and Innovative Research Team in University, ChinaProject (NCET-10-0070) supported by the Program for New Century Excellent Talents in University, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity.
文摘The thermal behaviors and burning characteristics of reconstituted tobacco (RT) are strongly related with evolved gaseous products. The effect of ammonium polyphosphate (APP) as an additive of RT on the pyrolysis behavior and CO evolution was studied, emphasizing the role of heating velocity in reducing CO delivery of the mainstream smoke by APP. Thermogravimetric analysis (TGA) was employed to investigate the influence of APP on RT thermal behavior. Slow and flash pyrolysis of RT were compared to discuss the role of heating rate in decreasing CO by APP. TGA results demonstrated that, in dependence on APP concentration, APP influenced exothermal amount and weight loss rate during RT thermal decomposition, promoted the formation of char and retarded the thermal decomposition of RT. In addition, APP had a considerable influence on the evolution of gaseous products during thermal decomposition of RT. Both CO delivery per cigarette and that per puff in the smoking process were significantly reduced in dependence on APP content in RT. Comparative analysis of CO evolution patterns in the flash and slow pyrolysis elucidated that heating rate played a key role in decreasing CO evolution by APP. The results suggest that APP is a potential burning additive for controlling CO delivery in mainstream smoke of RT.
文摘Ammonium dinitramide [NH4 N(NO_2)2, ADN] is considered as a possible replacement for ammonium perchlorate(AP) in nearly all kind of solid rocket propulsions in the coming future. The reason to use ADN instead of AP in solid rocket propulsion is because of its harmless combustion products, along with its capacity to generate high specific impulse(Isp). ADN is fairly a new member in the solid oxidizer community and is considered under green energetic material(GEM). Application and feasible utilization of ADN as an oxidizer for composite solid propellants(CSP's) requires complete knowledge of its thermal decomposition processes along with its combustion behavior. A detailed overview on the physical and chemical properties, thermal decomposition, and combustion behavior of ADN and ADN based propellants has been discussed in this paper. Catalytic effect on thermal decomposition, combustion wave structure, and burning rate of ADN is also discussed.
基金DRDO(TBR-1251)for funding and awarding the Project
文摘This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.
基金Project supported by the National Natural Science Foundation of China (50306008)Advance Research Foundation forGeneral Equipment Department (41328030507)
文摘Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.
文摘Alkaline earth benzoates were synthesized using hydrothermal reaction. The complexes were characterized by elemental analysis, IR, X ray powder diffraction. All of them are monoclinic and have layered structure. The mechanism of thermal decomposition of alkaline earth benzoates was studied by using TG, DTA, IR and gas chromatography mass spectrometry. The thermal decomposition of alkaline earth benzoates in nitrogen proceeded in one or two stages: they decomposed to form MCO 3 (M=Ca,Sr,Ba) or MgO and organic compounds, respectively. The organic compounds obtained from decomposition reaction are mainly benzophenone, triphenylmethane and so on.