Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in a...Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in an isoparametric concept,the same high order and high continuity non-uniform rational B-splines(NURBS)to represent both the geometry and the physical field of the structure.Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved,IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli(EB)beam elements,therefore,does not need extra rotational degrees-of-freedom.In this paper,we present a thermally induced vibration analysis framework based on the isogeometric method where thermal and structural behaviors are coupled.We fully exploited the higher order,higher continuous and geometric exactness of the NURBS basis with both benchmarks and sophisticated problems.In particular,we studied the thermally induced vibrations of the Hubble Space Telescope(HST)solar panel where main factors influencing thermal flutters are studied,and where possible improvements of the analytical reference methods are discussed.Additionally,thermally induced vibrations of the thin-walled lenticular tubes are studied and two new configurations of the tube are proposed to effectively suppress the thermally induced vibrations.Numerical examples of both benchmarks and sophisticated problems confirm the accuracy and efficiency of the isogeometric analysis framework for thermally induced vibration analysis of space structures.展开更多
The flexible attachments of spacecraft may undergo Thermally Induced Vibration(TIV)on orbit due to the suddenly changed solar heating. The unstable TIV, called thermal-flutter, can cause serious damage to the spacecra...The flexible attachments of spacecraft may undergo Thermally Induced Vibration(TIV)on orbit due to the suddenly changed solar heating. The unstable TIV, called thermal-flutter, can cause serious damage to the spacecraft. In this paper, the coupled bending-torsion thermal vibration equations for an open thin-walled circular cantilever beam are established. By analyzing the stability of these equations based on the first Lyapunov method, the thermal-flutter criterion can be obtained. The criterion is very different form that of closed thin-walled beams because the torsion has great impact on the stability of the TIV for open thin-walled beams. Several numerical simulations are conducted to demonstrate that the theoretical predictions agree very well with the finite element results, which mean that the criterion are reliable.展开更多
基金Y.Guo would like to thank the National Natural Science Foundation of China(Grant No.11972187)and Priority Academic Program Development of Jiangsu Higher Education Institutions for their support.
文摘Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in an isoparametric concept,the same high order and high continuity non-uniform rational B-splines(NURBS)to represent both the geometry and the physical field of the structure.Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved,IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli(EB)beam elements,therefore,does not need extra rotational degrees-of-freedom.In this paper,we present a thermally induced vibration analysis framework based on the isogeometric method where thermal and structural behaviors are coupled.We fully exploited the higher order,higher continuous and geometric exactness of the NURBS basis with both benchmarks and sophisticated problems.In particular,we studied the thermally induced vibrations of the Hubble Space Telescope(HST)solar panel where main factors influencing thermal flutters are studied,and where possible improvements of the analytical reference methods are discussed.Additionally,thermally induced vibrations of the thin-walled lenticular tubes are studied and two new configurations of the tube are proposed to effectively suppress the thermally induced vibrations.Numerical examples of both benchmarks and sophisticated problems confirm the accuracy and efficiency of the isogeometric analysis framework for thermally induced vibration analysis of space structures.
文摘The flexible attachments of spacecraft may undergo Thermally Induced Vibration(TIV)on orbit due to the suddenly changed solar heating. The unstable TIV, called thermal-flutter, can cause serious damage to the spacecraft. In this paper, the coupled bending-torsion thermal vibration equations for an open thin-walled circular cantilever beam are established. By analyzing the stability of these equations based on the first Lyapunov method, the thermal-flutter criterion can be obtained. The criterion is very different form that of closed thin-walled beams because the torsion has great impact on the stability of the TIV for open thin-walled beams. Several numerical simulations are conducted to demonstrate that the theoretical predictions agree very well with the finite element results, which mean that the criterion are reliable.