The semiconductor thin disk laser is a new type of semiconductor laser. This work gives the basic operation function of the semiconductor disk laser, and analyses the heat effect by the experimentally measured photolu...The semiconductor thin disk laser is a new type of semiconductor laser. This work gives the basic operation function of the semiconductor disk laser, and analyses the heat effect by the experimentally measured photoluminescence spectrum of the laser chip at different pump power and different temperatures. We can see that: with increasing pump power, the thermal effect of the gain material becomes seriously and causes the saturation of carrier lifetime, so the electron-hole pair created in the absorbtion layer has no enough time to rate to one of the wells, and the non-radiative recombination happens in the barrier. When the thermal effect becomes stronger, the chip will be not lasing. This phenomenon is from the smaller energy offset between barrier and quantum well. We optimize the original structure design and experimental technology. A non-absorbing AlGaAs layer which is transparent to the pumping and laser wavelength is added to confine the carriers in the quantum wells. At the same time a DBR with double reflecting band is induced to improve the absorbing efficiency of the pumping light. The single QW is replaced by the three narrow QWs. This three QWs structure can add the quantum state of QW, increase the recombination probability of carriers in the QWs and reduce the heat effect. The chemical etching equipment is also improved to control the surface unevenness to be within 50 nm.展开更多
Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror(SESAM). 12.1 W mode-locked pulses were obtained with...Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror(SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit.展开更多
In this paper, we propose and demonstrate an adjustable-free and movable Nd:YVO_(4)thin disk laser based on the telecentric cat’s eye cavity. We design a V-shaped laser cavity containing two reflectors with Nd:YVO_(4...In this paper, we propose and demonstrate an adjustable-free and movable Nd:YVO_(4)thin disk laser based on the telecentric cat’s eye cavity. We design a V-shaped laser cavity containing two reflectors with Nd:YVO_(4)thin disks as the gain medium.The experimental results from the traditional plane-plane cavity, plane-telecentric cat’s eye cavity, and double telecentric cat’s eye cavity are compared. They show that plane-telecentric cat’s eye cavity laser can keep operating at the adjustablefree range of -6° to +6°, which is up to 60 times better than that of traditional plane-plane cavity. In the double telecentric cat’s eye case, the adjustable-free range is improved to-13° to +13°. Additionally, in the case of the double telecentric cat’s eye cavity, the output telecentric cat’s eye can achieve free movement within the horizontal range of ±20 mm.展开更多
A simple,compact,double-pass pumped Nd:YVO4 thin disk laser is demonstrated.Its continuous-wave performance with different Nd doping concentrations and thicknesses is investigated experimentally.The maximum output pow...A simple,compact,double-pass pumped Nd:YVO4 thin disk laser is demonstrated.Its continuous-wave performance with different Nd doping concentrations and thicknesses is investigated experimentally.The maximum output power of 17.7 W is achieved by employing a 0.5 at.%doped sample,corresponding to an optical-to-optical efficiency of 46% with respect to the absorbed pump power.In addition,a numerical analysis and an experimental study of the temperature distribution,and thermal lens effect of the Nd:YVO4 thin disk,are presented considering the influence of the energy transfer upconversion effect and the temperature dependence of the thermal conductivity tensor.The simulated results are in good agreement with the experimental results.展开更多
文摘The semiconductor thin disk laser is a new type of semiconductor laser. This work gives the basic operation function of the semiconductor disk laser, and analyses the heat effect by the experimentally measured photoluminescence spectrum of the laser chip at different pump power and different temperatures. We can see that: with increasing pump power, the thermal effect of the gain material becomes seriously and causes the saturation of carrier lifetime, so the electron-hole pair created in the absorbtion layer has no enough time to rate to one of the wells, and the non-radiative recombination happens in the barrier. When the thermal effect becomes stronger, the chip will be not lasing. This phenomenon is from the smaller energy offset between barrier and quantum well. We optimize the original structure design and experimental technology. A non-absorbing AlGaAs layer which is transparent to the pumping and laser wavelength is added to confine the carriers in the quantum wells. At the same time a DBR with double reflecting band is induced to improve the absorbing efficiency of the pumping light. The single QW is replaced by the three narrow QWs. This three QWs structure can add the quantum state of QW, increase the recombination probability of carriers in the QWs and reduce the heat effect. The chemical etching equipment is also improved to control the surface unevenness to be within 50 nm.
基金Project supported by the National Key Basic Research Program of China(Grant No.2013CB922402)the National Major Instrument Program of China(Grant No.2012YQ120047)the National Natural Science Foundation of China(Grant No.61210017)
文摘Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror(SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.61775223 and 11974367)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB1603)Shanghai Science and Technology Innovation Action Plan Project(No.19142202500)。
文摘In this paper, we propose and demonstrate an adjustable-free and movable Nd:YVO_(4)thin disk laser based on the telecentric cat’s eye cavity. We design a V-shaped laser cavity containing two reflectors with Nd:YVO_(4)thin disks as the gain medium.The experimental results from the traditional plane-plane cavity, plane-telecentric cat’s eye cavity, and double telecentric cat’s eye cavity are compared. They show that plane-telecentric cat’s eye cavity laser can keep operating at the adjustablefree range of -6° to +6°, which is up to 60 times better than that of traditional plane-plane cavity. In the double telecentric cat’s eye case, the adjustable-free range is improved to-13° to +13°. Additionally, in the case of the double telecentric cat’s eye cavity, the output telecentric cat’s eye can achieve free movement within the horizontal range of ±20 mm.
基金Ministry of Science and Technology of the People's Republic of China(MOST)(2016YFB1102402,2017YFB0405202)Key Laboratory of Opto-electronic Information Technology,Ministry of Education(Tianjin University),China(2019KFKT003)Shanghai Science and Technology Achievements Transformation and Industrialization project(18511109800).
文摘A simple,compact,double-pass pumped Nd:YVO4 thin disk laser is demonstrated.Its continuous-wave performance with different Nd doping concentrations and thicknesses is investigated experimentally.The maximum output power of 17.7 W is achieved by employing a 0.5 at.%doped sample,corresponding to an optical-to-optical efficiency of 46% with respect to the absorbed pump power.In addition,a numerical analysis and an experimental study of the temperature distribution,and thermal lens effect of the Nd:YVO4 thin disk,are presented considering the influence of the energy transfer upconversion effect and the temperature dependence of the thermal conductivity tensor.The simulated results are in good agreement with the experimental results.