The influence of magnesium and aluminum salts as impurities on the hydrolysis of titanyl sulfate was investigated.The degree of TiOSO4 conversion to hydrated titanium dioxide(HTD) and the particle size of HTD were m...The influence of magnesium and aluminum salts as impurities on the hydrolysis of titanyl sulfate was investigated.The degree of TiOSO4 conversion to hydrated titanium dioxide(HTD) and the particle size of HTD were measured as functions of the concentrations of MgSO4 and Al2(SO4)3 in the TiOSO4 solution.The Boltzmann growth model,which focuses on two main parameters,namely the concentrations of Mg2+ and Al3+(ρ(Mg2+) and ρ(Al3+),respectively),fits the data from the hydrolysis process well with R20.988.The samples were characterized by ICP,SEM,XRD,and laser particle size analyzer.It is found that the addition of Mg SO4 simultaneously improves the hydrolysis ratio and the hydrolysis rate,especially when F(the mass ratio of H2SO4 to TiO2) is high,hydrolysis ratio increases from 42.8% to 83.0%,whereas the addition of Al2(SO4)3 has negligible effect on the chemical kinetics of HTD precipitation during the hydrolysis process,hydrolysis ratio increases from 42.8% to 51.9%.An investigation on the particle size of HTD reveals that the addition of Mg SO4 and Al2(SO4)3 clearly increases the size of the crystallites and decreases the size of the aggregates.展开更多
The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfmic acid solu- tion was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM...The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfmic acid solu- tion was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron micros- copy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfi.Lric acid, and the seed dosage of mtile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100℃. When the hydrolysis rate of titanitma expressed by TiOa was more than or equal to 0.04 g/(L.min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L.min). With the hy- drolysis rate between 0.02 and 0.03 g/(L.min), the hydrolysate contained almost equal magnitude ofrutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.展开更多
基金Project(51090380)supported by the National Natural Science Foundation of ChinaProjects(2013CB632601,2013CB632604)supported by the National Basic Research Program of China
文摘The influence of magnesium and aluminum salts as impurities on the hydrolysis of titanyl sulfate was investigated.The degree of TiOSO4 conversion to hydrated titanium dioxide(HTD) and the particle size of HTD were measured as functions of the concentrations of MgSO4 and Al2(SO4)3 in the TiOSO4 solution.The Boltzmann growth model,which focuses on two main parameters,namely the concentrations of Mg2+ and Al3+(ρ(Mg2+) and ρ(Al3+),respectively),fits the data from the hydrolysis process well with R20.988.The samples were characterized by ICP,SEM,XRD,and laser particle size analyzer.It is found that the addition of Mg SO4 simultaneously improves the hydrolysis ratio and the hydrolysis rate,especially when F(the mass ratio of H2SO4 to TiO2) is high,hydrolysis ratio increases from 42.8% to 83.0%,whereas the addition of Al2(SO4)3 has negligible effect on the chemical kinetics of HTD precipitation during the hydrolysis process,hydrolysis ratio increases from 42.8% to 51.9%.An investigation on the particle size of HTD reveals that the addition of Mg SO4 and Al2(SO4)3 clearly increases the size of the crystallites and decreases the size of the aggregates.
基金financially supported by a grant from the Ph.D. Programs Foundation of the Ministry of Education of China (No.20070610125)
文摘The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfmic acid solu- tion was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron micros- copy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfi.Lric acid, and the seed dosage of mtile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100℃. When the hydrolysis rate of titanitma expressed by TiOa was more than or equal to 0.04 g/(L.min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L.min). With the hy- drolysis rate between 0.02 and 0.03 g/(L.min), the hydrolysate contained almost equal magnitude ofrutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.