Excellent performances promoted by lattice oxygen have attracted wide attention for catalytic degradation of volatile organic compounds(VOCs).However,how to control the continuous regeneration of lattice oxygen from t...Excellent performances promoted by lattice oxygen have attracted wide attention for catalytic degradation of volatile organic compounds(VOCs).However,how to control the continuous regeneration of lattice oxygen from the support is seldom reported.In this study,we selected sepiolite supported manganese-cobalt oxides(Co_(x)Mn_(100-x)O_(y))as model catalysts by tuning Co/(Co+Mn)mass ratio(x=3%,10%,15%,and 20%)to enhance toluene degradation efficiency,owing to lattice oxygen regeneration by redox cycle existing at the interface and Mn species with high valence state,initiated by cobalt catalytic performance under the role of crystal field stability phase.The results of activity test show that the sepiolite-Co_(15)Mn_(85)O_(y)catalyst exhibit outperformances at 193℃with 10,000 h^(-1)GHSV.In addition,the catalyst existed at the bottom of the"volcano"curve correlated T_(50)or T_(90)with Co/(Co+Mn)weight ratio is sepiolite-Co_(15)Mn_(85)O_(y),conforming its outperformance.Further characterized by investigating active sites structural and electronic properties,the essential of superior catalytic activity is attributed to the grands of lattice oxygen continuous formation resulted from redox engineering based on the high atomic ratio of surface lattice oxygen with continuous refilled from the support and that of Mn^(4+)/Mn^(3+)cycle initiated by cobalt catalytic behaviors.All in all,redox engineering,not only promotes grands of active species reversible regeneration,but supplies an alternative catalyst design strategy towards the terrific efficiency-to-cost ratio performance.展开更多
Toluene degradation performances were studied in a 10 L Two-Phase Partitioning Bioreactor(TPPB).The liquid phase consisted of a mixture of water and PDMS 50(Poly Di Methyl Siloxane,i.e.silicone oil,viscosity of 46 m P...Toluene degradation performances were studied in a 10 L Two-Phase Partitioning Bioreactor(TPPB).The liquid phase consisted of a mixture of water and PDMS 50(Poly Di Methyl Siloxane,i.e.silicone oil,viscosity of 46 m Pa·s) in the volume ratio of 75%/25%.Two series of experiments were carried out:in the first,the reactor was sequentially supplied with toluene whereas in the second,toluene was continuously supplied.Activated sludge from the wastewater treatment plant of Beaurade(Rennes,France) was used at an initial concentration of 0.5 dry mass g·(mixture L)^(-1).The elimination capacity(EC) was investigated as well as the change in biomass concentration over time.Toluene biodegradation was very ef ficient(removal ef ficiency,RE=100%) for toluene flows ranging from 0.2 to 1.2 ml·h^(-1),corresponding to elimination capacities of up to 104 g·m^(-3)·h^(-1).For a toluene flow of 1.2 ml·h^(-1),the biomass concentration measured at the end of the experiment was 4.7 dry mass g·(mixture L)^(-1).The oxygen concentration in the liquid phase was clearly not a limiting factor in these operating conditions.Based on these results,an extrapolation leading to the design of a large-scale pilot TPPB can now be considered to study toluene degradation performances in industrial conditions.展开更多
Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated d...Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.展开更多
This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst wa...This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst was tested on a home-made volatile organic compounds degradation system. The ozone modification, toluene adsorption and degradation mechanism were established by a combination of various characterization methods, in situ diffuse reflectance infrared fourier transform spectroscopy, and density functional theory calculation.The surface modification with ozone can significantly enhance the photocatalytic degradation performance for toluene. The abundant unsaturated coordinated 5 c-Ti sites on(001)facets act as the adsorption sites for ozone. The formed Ti–O bonds reacted with H2O to generate a large amount of isolated Ti5 c-OH which act as the adsorption sites for toluene,and thus significantly increase the adsorption capacity for toluene. The outstanding photocatalytic performance of ozone-modified TiO2 is due to its high adsorption ability for toluene and the abundant surface hydroxyl groups, which produce very reactive OH·radicals under irradiation. Furthermore, the O2 generated via ozone dissociation could combine with the photogenerated electrons to form superoxide radicals which are also conductive to the toluene degradation.展开更多
It is crucial to efficiently separate and transport photo-induced charge carriers for the effective implementation of photocatalysis toward environmental remediation.A rational design strategy is proposed to validate ...It is crucial to efficiently separate and transport photo-induced charge carriers for the effective implementation of photocatalysis toward environmental remediation.A rational design strategy is proposed to validate such proposition through the construction of an interfacial structure in the form of LDH/Zn_(2)SnO_(4) heterostructures in this research.The interfacial charge transfer on LDH/Zn_(2)SnO_(4) is greatly promoted via the unique charge transfer pathway,as characterized by transient photocurrent responses,X-ray photoelectron spectroscopy,electron paramagnetic resonance spectrum,and photoluminescence analysis.As such,it contributes to the generation of reactive oxygen species(ROS)and the activation of reactants for the mineralization of toluene.According to the in situ DRIFTS spectra analysis,the accumulation of benzoic acid takes place possibly through the partial oxidation of the methyl group on toluene at the interface of the LDH/Zn 2 SnO 4 heterostructure.This process can greatly promote the photocatalytic oxidation of toluene with the enhanced ring-opening efficiency.The LDH/Zn 2 SnO 4 is thus demonstrated as superior photocatalyst against toluene(removal efficiency of 89.5%;mineralization of 83.1%;and quantum efficiency of 4.55×10^(−6) molecules/photon).As such,the performance of this composite far exceeds that of their individual components(e.g.,P25,pure Mg-Al LDH,or Zn_(2)SnO_(4)).This study is expected to offer a new path to the interfacial charge transfer mechanism based on the design of highly efficient photocatalysts for air purification.展开更多
Crystal defect is well-known to have a significant effect on the photocatalytic performance of semiconductors. Herein, defect-rich and-poor BaSn(OH)6(BSOH-Sn and BSOH-Ba) photocatalysts were synthesized by exchanging ...Crystal defect is well-known to have a significant effect on the photocatalytic performance of semiconductors. Herein, defect-rich and-poor BaSn(OH)6(BSOH-Sn and BSOH-Ba) photocatalysts were synthesized by exchanging the addition order of Ba and Sn. Results show that the defect-poor BSOH-Ba exhibited more efficient toluene degradation under ultraviolet(UV) light, which could attribute to the great suppression of photogenerated electron-hole(e--h+) pairs recombination by tuning the defect concentration. The low defect concentration in BSOH-Ba finally promotes the charge separation efficiency, the generation of reactive oxygen species(ROS), and the photocatalytic toluene degradation reactions. This work not only provides an effective way to inhibit the recombination of photogenerated carriers and improve the photocatalytic performance, but also promotes the understanding of defective perovskite-type hydroxide for more photoreactions.展开更多
As a decorative material, magnesium oxychloride cement was used as a photocatalyst supporter to purify the pollutants indoors. Due to excellent adsorption properties of activated carbon(AC), the photocatalytic compo...As a decorative material, magnesium oxychloride cement was used as a photocatalyst supporter to purify the pollutants indoors. Due to excellent adsorption properties of activated carbon(AC), the photocatalytic composties, TiO2/AC, were prepared and introduced into the porous magnesium oxychloride cement(PMOC) substrate to composite a sort of photocatalytic cementitious material(PCM). The optimal composite processes were assessed by gas chromatograph, using toluene as the target. By comparing the perspective of toluene purification and thorough decomposition, it can be found that the optimal mass ratio for TiO2/AC composites is 4/25, and the heat treatment to TiO2/AC sample at 350 ℃ can play the optimal synergetic role of adsorbents in photocatalytic process. The synergistic effect of TiO2, AC and magnesium oxychloride cement(MOC) was also evaluated by gas chromatograph. One-take molding process was adopted to introduce the TiO2/AC into PMOC substrate, and its optimal mass fraction was 4 wt%, while the appropriate density of substrate was 0.35 g/cm3. Toluene degradation showed that the prepared PCM can degrade pollutants efficiently. The appropriate treatment process of TiO2/AC, mass of TiO2/AC, substrate density, and stable pore structure should be coordinated to maximize the adsorption-photodegradation performance. The combination of photocatalytic materials, adsorbents, and building materials provided a new idea for the application of photocatalysis.展开更多
Mesoporous carbon-supported cobalt (Co-MC) catalysts are widely applied as electrode materials for bat- teries. Conversely, the development of Co-MC as bifunctional catalysts for application in organic catalytic rea...Mesoporous carbon-supported cobalt (Co-MC) catalysts are widely applied as electrode materials for bat- teries. Conversely, the development of Co-MC as bifunctional catalysts for application in organic catalytic reactions and degradation of water contaminants is slower. Herein, the catalyst displayed high activity in the selective oxidation of toluene to benzaldehyde under mild conditions, attaining a high selectivity of 92.3%. Factors influencing the catalytic reaction performance were also investigated. Additionally, Co-MC displayed remarkable catalytic activity in degrading dyes relative to the pure metal counterpart. Moreover, the catalyst exhibited excellent reusability, as determined by the cyclic catalytic experiments. The paper demonstrates the potential of Co-MC as a bifunctional catalyst for both toluene selective oxidation and water contaminant degradation.展开更多
Vacuum ultraviolet(VUV) photolysis is a facile method for volatile organic compounds(VOCs) elimination, but is greatly limited by the relatively low removal efficiency and the possible secondary pollution. To overcome...Vacuum ultraviolet(VUV) photolysis is a facile method for volatile organic compounds(VOCs) elimination, but is greatly limited by the relatively low removal efficiency and the possible secondary pollution. To overcome above drawbacks, we developed an efficient method for VOCs elimination via VUV photolysis coupled with wet scrubbing process. In this coupled process, volatile toluene, a representative of VOCs, was oxidized by the gas-phase VUV photolysis, and then scrubbed into water for further oxidation by the liquid-phase VUV photolysis. More than 96% of toluene was efficiently removed by this coupled process, which was 2 times higher than that in the gas-phase VUV photolysis. This improvement was attributed to the synergistic effect between gas-phase and liquid-phase VUV photolysis. O3and HO·are the predomination reactive species for the toluene degradation in this coupled process, and the generation of O3in gas-phase VUV photolysis can efficiently enhance the HO·production in liquid-phase VUV photolysis. The result from in-situ proton transfer reaction ionization with mass analyzer(PTR-MS) further suggested that most intermediates were trapped by the wet scrubbing process and efficiently oxidized by the liquid-phase VUV photolysis, showing a high performance for controlling the secondary pollution. Furthermore, the result of stability test and the reuse of solution demonstrated that this coupled process has a highly stable and sustainable performance for toluene degradation. This study presents an environmentally benign and highly efficient VUV photolysis for gaseous VOCs removal in the wet scrubbing process.展开更多
基金Supported by the National Natural Science Foundation of China(21707023)Provincial Key Research and Development Plan of Hunan Province(2018SK2034)New Faculty Start-Up Funding from Xiangtan University(18QDZ16)。
文摘Excellent performances promoted by lattice oxygen have attracted wide attention for catalytic degradation of volatile organic compounds(VOCs).However,how to control the continuous regeneration of lattice oxygen from the support is seldom reported.In this study,we selected sepiolite supported manganese-cobalt oxides(Co_(x)Mn_(100-x)O_(y))as model catalysts by tuning Co/(Co+Mn)mass ratio(x=3%,10%,15%,and 20%)to enhance toluene degradation efficiency,owing to lattice oxygen regeneration by redox cycle existing at the interface and Mn species with high valence state,initiated by cobalt catalytic performance under the role of crystal field stability phase.The results of activity test show that the sepiolite-Co_(15)Mn_(85)O_(y)catalyst exhibit outperformances at 193℃with 10,000 h^(-1)GHSV.In addition,the catalyst existed at the bottom of the"volcano"curve correlated T_(50)or T_(90)with Co/(Co+Mn)weight ratio is sepiolite-Co_(15)Mn_(85)O_(y),conforming its outperformance.Further characterized by investigating active sites structural and electronic properties,the essential of superior catalytic activity is attributed to the grands of lattice oxygen continuous formation resulted from redox engineering based on the high atomic ratio of surface lattice oxygen with continuous refilled from the support and that of Mn^(4+)/Mn^(3+)cycle initiated by cobalt catalytic behaviors.All in all,redox engineering,not only promotes grands of active species reversible regeneration,but supplies an alternative catalyst design strategy towards the terrific efficiency-to-cost ratio performance.
基金the French Environment and Energy Management Agency(ADEME) for their support through a PhD fellowship for M.Guillerm
文摘Toluene degradation performances were studied in a 10 L Two-Phase Partitioning Bioreactor(TPPB).The liquid phase consisted of a mixture of water and PDMS 50(Poly Di Methyl Siloxane,i.e.silicone oil,viscosity of 46 m Pa·s) in the volume ratio of 75%/25%.Two series of experiments were carried out:in the first,the reactor was sequentially supplied with toluene whereas in the second,toluene was continuously supplied.Activated sludge from the wastewater treatment plant of Beaurade(Rennes,France) was used at an initial concentration of 0.5 dry mass g·(mixture L)^(-1).The elimination capacity(EC) was investigated as well as the change in biomass concentration over time.Toluene biodegradation was very ef ficient(removal ef ficiency,RE=100%) for toluene flows ranging from 0.2 to 1.2 ml·h^(-1),corresponding to elimination capacities of up to 104 g·m^(-3)·h^(-1).For a toluene flow of 1.2 ml·h^(-1),the biomass concentration measured at the end of the experiment was 4.7 dry mass g·(mixture L)^(-1).The oxygen concentration in the liquid phase was clearly not a limiting factor in these operating conditions.Based on these results,an extrapolation leading to the design of a large-scale pilot TPPB can now be considered to study toluene degradation performances in industrial conditions.
基金supported by National Natural Science Foundation of China(No.52177130)the Key Projects for Industrial Prospects and Core Technology Research in Suzhou City(No.SYC2022029)。
文摘Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.
基金the National Natural Science Foundation of China (U1632273, 21673214,U1732272, U1832165).
文摘This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst was tested on a home-made volatile organic compounds degradation system. The ozone modification, toluene adsorption and degradation mechanism were established by a combination of various characterization methods, in situ diffuse reflectance infrared fourier transform spectroscopy, and density functional theory calculation.The surface modification with ozone can significantly enhance the photocatalytic degradation performance for toluene. The abundant unsaturated coordinated 5 c-Ti sites on(001)facets act as the adsorption sites for ozone. The formed Ti–O bonds reacted with H2O to generate a large amount of isolated Ti5 c-OH which act as the adsorption sites for toluene,and thus significantly increase the adsorption capacity for toluene. The outstanding photocatalytic performance of ozone-modified TiO2 is due to its high adsorption ability for toluene and the abundant surface hydroxyl groups, which produce very reactive OH·radicals under irradiation. Furthermore, the O2 generated via ozone dissociation could combine with the photogenerated electrons to form superoxide radicals which are also conductive to the toluene degradation.
基金This work was supported by the National Natural Science Foundation of China(21822601,22176029,22172019)the Sichuan Natural Science Foundation for Distinguished Scholars(2021JDJQ0006)+2 种基金the 111 Project(B20030)the Funda-mental Research Funds for the Central Universities(ZYGX2019Z021)KHK acknowledges support made by a grant from the National Research Foundation of Korea(NRF)funded by the Ministry Of Science And ITC(MSIT)Of The Kor-ean Government(Grant No:2021R1A3B1068304).
文摘It is crucial to efficiently separate and transport photo-induced charge carriers for the effective implementation of photocatalysis toward environmental remediation.A rational design strategy is proposed to validate such proposition through the construction of an interfacial structure in the form of LDH/Zn_(2)SnO_(4) heterostructures in this research.The interfacial charge transfer on LDH/Zn_(2)SnO_(4) is greatly promoted via the unique charge transfer pathway,as characterized by transient photocurrent responses,X-ray photoelectron spectroscopy,electron paramagnetic resonance spectrum,and photoluminescence analysis.As such,it contributes to the generation of reactive oxygen species(ROS)and the activation of reactants for the mineralization of toluene.According to the in situ DRIFTS spectra analysis,the accumulation of benzoic acid takes place possibly through the partial oxidation of the methyl group on toluene at the interface of the LDH/Zn 2 SnO 4 heterostructure.This process can greatly promote the photocatalytic oxidation of toluene with the enhanced ring-opening efficiency.The LDH/Zn 2 SnO 4 is thus demonstrated as superior photocatalyst against toluene(removal efficiency of 89.5%;mineralization of 83.1%;and quantum efficiency of 4.55×10^(−6) molecules/photon).As such,the performance of this composite far exceeds that of their individual components(e.g.,P25,pure Mg-Al LDH,or Zn_(2)SnO_(4)).This study is expected to offer a new path to the interfacial charge transfer mechanism based on the design of highly efficient photocatalysts for air purification.
基金supported by the National Natural Science Foundation of China (Nos. 22176029, 21822601, 51908091, and 52200122)the Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxm X0213)+1 种基金the Science and Technology Research Project of Chongqing Education Commission (No. KJQN202200806)the Start-up Foundation of High-level Talents in Chongqing Technology and Business University (Nos. 2256006 and 1856044)。
文摘Crystal defect is well-known to have a significant effect on the photocatalytic performance of semiconductors. Herein, defect-rich and-poor BaSn(OH)6(BSOH-Sn and BSOH-Ba) photocatalysts were synthesized by exchanging the addition order of Ba and Sn. Results show that the defect-poor BSOH-Ba exhibited more efficient toluene degradation under ultraviolet(UV) light, which could attribute to the great suppression of photogenerated electron-hole(e--h+) pairs recombination by tuning the defect concentration. The low defect concentration in BSOH-Ba finally promotes the charge separation efficiency, the generation of reactive oxygen species(ROS), and the photocatalytic toluene degradation reactions. This work not only provides an effective way to inhibit the recombination of photogenerated carriers and improve the photocatalytic performance, but also promotes the understanding of defective perovskite-type hydroxide for more photoreactions.
基金Funded by the National Natural Science Foundation of China(No.51478370)
文摘As a decorative material, magnesium oxychloride cement was used as a photocatalyst supporter to purify the pollutants indoors. Due to excellent adsorption properties of activated carbon(AC), the photocatalytic composties, TiO2/AC, were prepared and introduced into the porous magnesium oxychloride cement(PMOC) substrate to composite a sort of photocatalytic cementitious material(PCM). The optimal composite processes were assessed by gas chromatograph, using toluene as the target. By comparing the perspective of toluene purification and thorough decomposition, it can be found that the optimal mass ratio for TiO2/AC composites is 4/25, and the heat treatment to TiO2/AC sample at 350 ℃ can play the optimal synergetic role of adsorbents in photocatalytic process. The synergistic effect of TiO2, AC and magnesium oxychloride cement(MOC) was also evaluated by gas chromatograph. One-take molding process was adopted to introduce the TiO2/AC into PMOC substrate, and its optimal mass fraction was 4 wt%, while the appropriate density of substrate was 0.35 g/cm3. Toluene degradation showed that the prepared PCM can degrade pollutants efficiently. The appropriate treatment process of TiO2/AC, mass of TiO2/AC, substrate density, and stable pore structure should be coordinated to maximize the adsorption-photodegradation performance. The combination of photocatalytic materials, adsorbents, and building materials provided a new idea for the application of photocatalysis.
文摘Mesoporous carbon-supported cobalt (Co-MC) catalysts are widely applied as electrode materials for bat- teries. Conversely, the development of Co-MC as bifunctional catalysts for application in organic catalytic reactions and degradation of water contaminants is slower. Herein, the catalyst displayed high activity in the selective oxidation of toluene to benzaldehyde under mild conditions, attaining a high selectivity of 92.3%. Factors influencing the catalytic reaction performance were also investigated. Additionally, Co-MC displayed remarkable catalytic activity in degrading dyes relative to the pure metal counterpart. Moreover, the catalyst exhibited excellent reusability, as determined by the cyclic catalytic experiments. The paper demonstrates the potential of Co-MC as a bifunctional catalyst for both toluene selective oxidation and water contaminant degradation.
基金supported by the National Natural Science Foundation of China (Nos. 22076224, 51908091 and 51908563)Open Fund of Guangdong Province Engineering Laboratory for Air Pollution Control (No. 2019323609-01)Key Laboratory of Water and Air Pollution Prevention and Control of Guangdong Province (No. 201901202)。
文摘Vacuum ultraviolet(VUV) photolysis is a facile method for volatile organic compounds(VOCs) elimination, but is greatly limited by the relatively low removal efficiency and the possible secondary pollution. To overcome above drawbacks, we developed an efficient method for VOCs elimination via VUV photolysis coupled with wet scrubbing process. In this coupled process, volatile toluene, a representative of VOCs, was oxidized by the gas-phase VUV photolysis, and then scrubbed into water for further oxidation by the liquid-phase VUV photolysis. More than 96% of toluene was efficiently removed by this coupled process, which was 2 times higher than that in the gas-phase VUV photolysis. This improvement was attributed to the synergistic effect between gas-phase and liquid-phase VUV photolysis. O3and HO·are the predomination reactive species for the toluene degradation in this coupled process, and the generation of O3in gas-phase VUV photolysis can efficiently enhance the HO·production in liquid-phase VUV photolysis. The result from in-situ proton transfer reaction ionization with mass analyzer(PTR-MS) further suggested that most intermediates were trapped by the wet scrubbing process and efficiently oxidized by the liquid-phase VUV photolysis, showing a high performance for controlling the secondary pollution. Furthermore, the result of stability test and the reuse of solution demonstrated that this coupled process has a highly stable and sustainable performance for toluene degradation. This study presents an environmentally benign and highly efficient VUV photolysis for gaseous VOCs removal in the wet scrubbing process.