期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Transcriptional regulation in the development and dysfunction of neocortical projection neurons 被引量:1
1
作者 Ningxin Wang Rong Wan Ke Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期246-254,共9页
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord... Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations. 展开更多
关键词 autism spectrum disorders COGNITION DIFFERENTIATION excitatory circuits intellectual disability NEOCORTEX neurodevelopmental disorders projection neuron specification transcriptional regulation
下载PDF
Transcriptional regulation of MdPIN7 by MdARF19 during gravityinduced formation of adventitious root GSA in self-rooted apple stock
2
作者 Zenghui Wang Xuemei Yang +5 位作者 Linyue Hu Wei Liu Lijuan Feng Xiang Shen Yanlei Yin Jialin Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1073-1084,共12页
Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the... Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals. 展开更多
关键词 APPLE Self-rooted stock GRAVITY MdARF19 MdPIN7 Gravitropic set-point angle transcriptional regulation
下载PDF
Phase separation and transcriptional regulation in cancer development 被引量:1
3
作者 Yan Gu Ke Wei Jun Wang 《Journal of Biomedical Research》 CAS CSCD 2024年第4期307-321,共15页
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol... Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development. 展开更多
关键词 phase separation transcription regulation CANCER super-enhancer CONDENSATES
下载PDF
Transcriptional Regulation of 10 Mitochondrial Genes in Different Tissues of NCa CMS System in Brassica napus L. and Their Relationship with Sterility 被引量:3
4
作者 危文亮 王汉中 刘贵华 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第1期72-80,共9页
Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revea... Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed. 展开更多
关键词 Brassica napus L. cytoplasmic male sterility (CMS) mitochondrial gene expression restorer gene transcriptional regulation
下载PDF
Transcriptional regulation of endothelial dysfunction in atherosclerosis:an epigenetic perspective 被引量:10
5
作者 Yong Xu 《The Journal of Biomedical Research》 CAS 2014年第1期47-52,共6页
Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosc... Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosclero- sis, including hyperlipidemia, diabetes, and hypertension, target the vascular endothelium by re-programming its transcriptome. These profound alterations taking place on the chromatin rely on the interplay between sequence specific transcription factors and the epigenetic machinery. The epigenetic machinery, in turn, tailor individual transcription events key to atherogenesis to intrinsic and extrinsic insults dictating the development of atheroscle- rotic lesions. This review summarizes our current understanding of the involvement of the epigenetic machinery in endothelial injury during atherogenesis. 展开更多
关键词 ATHEROSCLEROSIS transcriptional regulation endothelial injury EPIGENETICS
下载PDF
Molecular Characterization, Expression Pattern and Transcriptional Regulation of Figla During Gonad Development in Japanese Founder (Paralichthys olivaceus)
6
作者 QU Jiangbo LI Rui +5 位作者 LIU Yuxiang SUN Minmin YAN Weijie LIU Jinxiang WANG Xubo ZHANG Quanqi 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第4期1037-1050,共14页
The factor in the germline alpha(figla), as a member of the basic helix-loop-helix family, has been reported to be involved in ovary development in mammals and teleosts. However, the regulatory mechanisms of figla in ... The factor in the germline alpha(figla), as a member of the basic helix-loop-helix family, has been reported to be involved in ovary development in mammals and teleosts. However, the regulatory mechanisms of figla in teleosts remain unclear. Here,figla in P. olivaceus(Pofigla) was characterized with encoding a 202 amino acid protein that contains a conserved basic region and helix-loop-helix(HLH) domain. Amino acids alignment and synteny analysis revealed that Pofigla was conserved with the orthologous gene sequences in other vertebrates. The results of qRT-PCR showed Pofigla was maternally inherited during embryonic development. For tissue distribution, Pofigla showed a sexually dimorphic gene expression in the gonad of different genders, with a higher expression in ovary than in testis. In situ hybridization(ISH) results demonstrated Pofigla was specifically expressed in germ cells including oocytes, spermatogonia and spermatocytes. By screening and analyzing two proximal regions(-2966/-2126 and-772/-444) with high promoter activity, we found SOX5, LEF1, FOXP1 and GATA1 may play important roles in the transcriptional regulation of Pofigla. Furthermore, we observed the co-localization between Figla and LEF1 in HEK 293T cells. And the significant up-regulation effect of the canonical Wnt signaling pathway on the expression of Pofigla was found in cultured ovarian cells. This study provided the first evidence that figla not only has an important function in ovary development, but also plays some potential roles in testis development and/or male germ cell differentiation during early testis development in P. olivaceus. The results provide valuable reference in exploring the regulatory network of figla in teleost. 展开更多
关键词 figla transcriptional regulation Wnt signaling pathway gonad development Paralichthys olivaceus
下载PDF
Molecular Modification of a HSV-1 Protein and Its Associated Gene Transcriptional Regulation
7
作者 Yan-chun CHE Li JIANG Qi-han LI 《Virologica Sinica》 SCIE CAS CSCD 2008年第6期394-398,共5页
The molecular modifications of Herpes Simplex Virus Type I (HSV-1) proteins represented by acetylation and phosphorylation are essential to its biological functions. The cellular chromatin-remodeling/ assembly is in... The molecular modifications of Herpes Simplex Virus Type I (HSV-1) proteins represented by acetylation and phosphorylation are essential to its biological functions. The cellular chromatin-remodeling/ assembly is involved in HSV-1 associated gene transcriptional regulation in human cells harboring HSV-1 lytic or latent infections. Further investigation on these biological events would provide a better understanding of the mechanisms of HSV-1 viral gene transcriptional regulation 展开更多
关键词 MODIFICATION Herpes simplex virus type (HSV- 1) transcriptional regulation
下载PDF
Transcription factor ZmNAC126 plays an important role in transcriptional regulation of maize starch synthesis-related genes 被引量:6
8
作者 Qianlin Xiao Yayun Wang +11 位作者 Hui Li Chunxia Zhang Bin Wei Yongbin Wang Huanhuan Huang Yangping Li Guowu Yu Hanmei Liu Junjie Zhang Yinghong Liu Yufeng Hu Yubi Huang 《The Crop Journal》 SCIE CSCD 2021年第1期192-203,共12页
Maize(Zea mays L.)is one of the most important food crops in the world,and starch is the main component of its endosperm.Transcriptional regulation plays a vital role in starch biosynthesis.However,it is not well unde... Maize(Zea mays L.)is one of the most important food crops in the world,and starch is the main component of its endosperm.Transcriptional regulation plays a vital role in starch biosynthesis.However,it is not well understood in maize.We report the identification of the transcription factor ZmNAC126 and its role in regulation of starch synthesis in maize.Transcriptional expression of ZmNAC126 was higher in maize endosperm and kernels than in roots or stems.ZmNAC126 shared a similar expression pattern with starch synthesis genes during seed development,and its expression pattern was also consistent with the accumulation of starch.ZmNAC126 is a typical transcription factor with a transactivation domain between positions 201 and 227 of the amino acid sequence,is located in the nucleus,and binds to CACG repeats in vitro.Yeast one-hybrid assay revealed that ZmNAC126 bound the promoters of ZmGBSSI,ZmSSIIa,ZmSSIV,ZmISA1,and ZmISA2.Transient overexpression of ZmNAC126 in maize endosperm increased the activities of promoters pZmSh2,pZmBt2,pZmGBSSI,pZmSSIIIa,and pZmBT1 but inhibited the activities of pZmISA1 and pZmISA2.ZmNAC126 thus acts in starch synthesis by transcriptionally regulating targeted starch synthesis-related genes in maize kernels. 展开更多
关键词 MAIZE Starch synthesis ZmNAC126 CO-EXPRESSION Transcription regulation
下载PDF
Transcriptional Regulation by HSV-1 Induced HTRP via Acetylation System
9
作者 Jie CHEN Yan-mei LI Jian-feng LI Long-ding LIU Yun LIAO Rui-xiong NA Jing-jing WANG Li-chun WANG Qi-han LI 《Virologica Sinica》 SCIE CAS CSCD 2010年第6期417-424,共8页
The protein HTRP (human transcription regulator protein) is encoded by the differential gene htrp and induced by Herpes simplex virus type 1 (HSV-1) infection in KMB-17 cells.HTRP was found to interact with SAP30 (mSi... The protein HTRP (human transcription regulator protein) is encoded by the differential gene htrp and induced by Herpes simplex virus type 1 (HSV-1) infection in KMB-17 cells.HTRP was found to interact with SAP30 (mSin3A Association Protein),one of the components of co-repressor complex mSin3A,which is part of the deacetylation transfer enzyme HDAC.To reveal the biological significance of the interaction between HTRP and SAP30,real-time PCR and a dual-luciferase detecting system was used.The results indicate that HTRP could inhibit the transcription of a viral promoter,whose interaction with SAP30 synergistically affects transcriptional inhibition of the viral genes,and is related to HDAC enzyme activity.ChIP experiments demonstrate that HTRP could promote HDAC activity by increasing the deacetylation level of lysine 14 and lysine 9 in histone H3. 展开更多
关键词 Herpes simplex virus type 1 (HSV-1) HTRP SAP30 Transcription regulation
下载PDF
Coordinated Transcriptional Regulation by the UVB Photoreceptor and Multiple Transcription Factors for Plant UV-B Responses 被引量:15
10
作者 Chongzhen Qian Zhiren Chen +7 位作者 Qing Liu Weiwei Mao Yanling Chen Wei Tian Yan Liu Jiupan Han Xinhao Ouyang Xi Huang 《Molecular Plant》 SCIE CAS CSCD 2020年第5期777-792,共16页
Non-damaging ultraviolet B(UV-B)light promotes photomorphogenic development and stress acclimation through UV-B-specific signal transduction in Arabidopsis.UV-B irradiation induces monomerization and nuclear transloca... Non-damaging ultraviolet B(UV-B)light promotes photomorphogenic development and stress acclimation through UV-B-specific signal transduction in Arabidopsis.UV-B irradiation induces monomerization and nuclear translocation of the UV-B photoreceptor UV RESISTANCE LOCUS 8(UVR8).However,it is not clear how the nuclear localization of UVR8 leads to changes in global gene expression.Here,we reveal that nuclear UVR8 governs UV-B-responsive transcriptional networks in concert with several previously known transcription factors,including ELONGATED HYPOCOTYL 5(HY5)and PHYTOCHROME INTERACTING FACTOR 4(PIF4).Based on the transcriptomic analysis,we identify MYB13 as a novel positive regulator in UV-B-induced cotyledon expansion and stress acclimation.MYB13 is UV-B inducible and is predominantly expressed in the cotyledons.Our results demonstrate that MYB13 protein functions as a transcription factor to regulate the expression of genes involved in auxin response and flavonoid biosynthesis through direct binding with their promoters.In addition,photoactivated UVR8 interacts with MYB13 in a UV-B-dependent manner and differentially modulates the affinity of MYB13 with its targets.Taken together,our results elucidate the cooperative function of the UV-B photoreceptor UVR8 with various transcription factors in the nucleus to orchestrate the expression of specific sets of downstream genes and,ultimately,mediate plant responses to UV-B light. 展开更多
关键词 UV-B UVR8 MYB13 transcription factor transcriptional regulation
原文传递
Transcriptional Regulation of Lipid Catabolism during Seedling Establishment 被引量:7
11
作者 Guangqin Cai Sang-Chul Kim +2 位作者 Jianwu Li Yongming Zhou Xuemin Wang 《Molecular Plant》 SCIE CAS CSCD 2020年第7期984-1000,共17页
Lipid catabolism in germinating seeds provides energy and substrates for initial seedling growth,but how this process is regulated is not well understood.Here,we show that an AT-hook motif-containing nuclear localized... Lipid catabolism in germinating seeds provides energy and substrates for initial seedling growth,but how this process is regulated is not well understood.Here,we show that an AT-hook motif-containing nuclear localized(AHL)protein regulates lipid mobilization and fatty acid p-oxidation during seed germination and seedling establishment.AHL4 was identified to directly interact with the lipid mediator phosphatidic acid(PA).Knockout(KO)of AHL4 enhanced,but overexpression(OE)of AHL4 attenuated,triacylglycerol(TAG)degradation and seedling growth.Normal seedling growth of the OE lines was restored by sucrose supplementation to the growth medium.AHL4-OE seedlings displayed decreased expression of genes involved in TAG hydrolysis and fatty acid oxidation,whereas the opposite was observed in AHL4-KOs.These genes contained AHL4-binding cis elements,and AHL4 was shown to bind to the promoter regions of genes encoding the TAG lipases SDP1 and DALL5 and acyl-thioesterase KAT5.These AHL4-DNA interactions were suppressed by PA species that bound to AHL4.These results indicate that AHL4 suppresses lipid catabolism by repressing the expression of specific genes involved in TAG hydrolysis and fatty acid oxidation,and that PA relieves AHL4-mediated suppression and promotes TAG degradation.Thus,AHL4 and PA together regulate lipid degradation during seed germination and seedling establishment. 展开更多
关键词 lipid catabolism lipid regulation phosphatidic acid seed germination seedling establishment transcriptional regulation
原文传递
Transcriptional Regulation of Secondary Growth and Wood Formation 被引量:14
12
作者 Andrew Groover 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2010年第1期17-27,共11页
Secondary growth and wood formation are products of the vascular cambium, a lateral meristem. Although the mechanisms have only recently begun to be uncovered, transcriptional regulation appears increasingly central t... Secondary growth and wood formation are products of the vascular cambium, a lateral meristem. Although the mechanisms have only recently begun to be uncovered, transcriptional regulation appears increasingly central to the regulation of secondary growth. The importance of transcriptional regulation is illustrated by the correlation of expression of specific classes of genes with related biological processes occurring at specific stages of secondary growth, including cell division, cell expansion, and cell differentiation. At the same time, transcription factors have been characterized that affect specific aspects of secondary growth, including regulation of the cambium and differentiation of cambial daughter cells. In the present review, we summarize evidence pointing to transcription as a major mechanism for regulation of secondary growth, and outline future approaches for comprehensively describing transcriptional networks underlying secondary growth. 展开更多
关键词 GENE transcriptional regulation of Secondary Growth and Wood Formation
原文传递
Transcriptional Regulation and Signaling in Phosphorus Starvation: What About Legumes? 被引量:4
13
作者 Oswaldo Valds-López Georgina Hernndez 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2008年第10期1213-1222,共10页
The availability of soil phosphorus (P), an essential element, is one of the most important requirements for plant growth and crop production. The morphological and physiological adaptations evolved by plants to cop... The availability of soil phosphorus (P), an essential element, is one of the most important requirements for plant growth and crop production. The morphological and physiological adaptations evolved by plants to cope with P starvation have been well characterized. Several P deficiency plant responses are regulated at the transcriptional level. Microarray analysis has generated valuable information on global gene expression in Arabidopsis thaliana grown under P-stress. Despite the identification of P responsive genes, little is known about the regulation of gene expression changes. Four transcription factors, PHRI, WRKY75, ZAT6 and BHLH32, involved in P starvation signaling have been characterized in Arabidopsis, and signaling pathways are deciphered. This review analyzes the current knowledge of transcriptional regulation of P starvation responses in Arabidopsis vis-a-vis legumes such as lupine, common bean and Medicago truncatula. The knowledge on regulatory and signaling mechanisms involved in P acquisition and use in legumes will be useful for improvement of these crops, which account for a large proportion of the world's crop production, providing good nutritional quality feed and food. 展开更多
关键词 legumes phosphorus starvation responses P starvation signaling pathways transcriptional regulation transcription factors.
原文传递
Transcriptional regulation of oil biosynthesis inseed plants: Current understanding, applications,and perspectives 被引量:4
14
作者 Yuzhou Yang Que Kong +5 位作者 Audrey R.Q.Lim Shaoping Lu Hu Zhao Liang Guo Ling Yuan Wei Ma 《Plant Communications》 SCIE 2022年第5期19-37,共19页
Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but a... Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use.TAG biosynthesis consists of two major steps:de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum.The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis.We summarize recent progress in understanding the regulatory mechanisms of wellcharacterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis.The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors,which in turn fine-tune the spatiotemporal regulation of the pathway genes. 展开更多
关键词 plant oil biosynthesis oil accumulation seed development environmental and developmental signals transcription factor transcriptional regulation
原文传递
Transcriptional and post‑transcriptional regulation of RNAi‑related gene expression during plant‑virus interactions 被引量:1
15
作者 Qian Gong Yunjing Wang +2 位作者 Zhenhui Jin Yiguo Hong Yule Liu 《Stress Biology》 2022年第1期287-298,共12页
As sessile organisms,plants encounter diverse invasions from pathogens including viruses.To survive and thrive,plants have evolved multilayered defense mechanisms to combat virus infection.RNAi,also known as RNA silen... As sessile organisms,plants encounter diverse invasions from pathogens including viruses.To survive and thrive,plants have evolved multilayered defense mechanisms to combat virus infection.RNAi,also known as RNA silencing,is an across-kingdom innate immunity and gene regulatory machinery.Molecular framework and crucial roles of RNAi in antiviral defense have been well-characterized.However,it is largely unknown that how RNAi is transcriptionally regulated to initiate,maintain and enhance cellular silencing under normal or stress conditions.Recently,insights into the transcriptional and post-transcriptional regulation of RNAi-related genes in different physiological processes have been emerging.In this review,we integrate these new findings to provide updated views on how plants modulate RNAi machinery at the(post-)transcriptional level to respond to virus infection. 展开更多
关键词 transcriptional regulation RNAI Gene expression VIRUS Plant immunity
下载PDF
Isolation and functional analysis of SrMYB1,a direct transcriptional repressor of SrUGT76G1 in Stevia rebaudiana 被引量:1
16
作者 ZHANG Ting ZHANG Yong-xia +5 位作者 SUN Yu-ming XU Xiao-yang WANG Yin-jie CHONG Xinran YANG Yong-heng YUAN Hai-yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1058-1067,共10页
SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 h... SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 has rarely been explored.In this study,we identified a MYB transcription factor,SrMYB1,using a yeast one-hybrid screening assay.SrMYB1 belongs to the typical R2R3-type MYB protein and is specifically localized in the nucleus with strong transactivation activity.The transcript of SrMYB1 is predominantly accumulated in flowers,but is also present at a lower level in leaves.Yeast one-hybrid and electrophoretic mobility shift assays verified that SrMYB1 binds directly to the MYB binding sites in the F4-3 fragment(+50–(–141))of the SrUGT76G1 promoter.Furthermore,we found that SrMYB1 could significantly repress the expression of SrUGT76G1 in both epidermal cells of tobacco leaves and stevia callus.Taken together,our results demonstrate that SrMYB1 is an essential upstream regulator of SrUGT76G1 and provide novel insight into the regulatory network for the SGs metabolic pathway in S.rebaudiana. 展开更多
关键词 Stevia rebaudiana SrUGT76G1 MYB transcription factor transcriptional regulation steviol glycosides
下载PDF
Computational Analysis of the Transcriptional Regulation of the Actin Family
17
作者 郑家顺 吴加金 孙之荣 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第6期652-659,共8页
Transcriptional regulation is a very important regulatory step in the regulation of gene expression. Transcription factors (TFs) play an important role in controlling the temporal special specificity of gene expressio... Transcriptional regulation is a very important regulatory step in the regulation of gene expression. Transcription factors (TFs) play an important role in controlling the temporal special specificity of gene expression. The regulation area of actin genes was analyzed statistically to predict the transcription factor binding sites in the regulatory area. A group of transcription factors located in most of the sequences is believed to play an important role in co-regulating the expression of actin genes. 展开更多
关键词 transcription factor ACTIN transcriptional regulation computational analysis
原文传递
Long non-coding RNAs with essential roles in neurodegenerative disorders
18
作者 Wandi Xiong Lin Lu Jiali Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1212-1220,共9页
Recently,with the advent of high-resolution and high-throughput sequencing technologies,an increasing number of long non-coding RNAs(lncRNAs)have been found to be involved in the regulation of neuronal function in the... Recently,with the advent of high-resolution and high-throughput sequencing technologies,an increasing number of long non-coding RNAs(lncRNAs)have been found to be involved in the regulation of neuronal function in the central nervous system with specific spatiotemporal patterns,across different neurodegenerative diseases.However,the underlying mechanisms of lncRNAs during neurodegeneration remain poorly understood.This review provides an overview of the current knowledge of the biology of lncRNAs and focuses on introducing the latest identified roles,regulatory mechanisms,and research status of lncRNAs in Alzheimer's disease,Parkinson's disease,Huntington's disease,and amyotrophic lateral sclerosis.Finally,this review discusses the potential values of lncRNAs as diagnostic biomarkers and therapeutic targets for neurodegenerative diseases,hoping to provide broader implications for developing effective treatments. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis BIOMARKER Huntington's disease long non-coding RNAs neurodegenerative diseases Parkinson's disease THERAPY transcriptional regulation translational regulation
下载PDF
The BEL1-like transcription factor GhBLH5-A05 participates in cotton response to drought stress
19
作者 Jing-Bo Zhang Yao Wang +4 位作者 Shi-Peng Zhang Fan Cheng Yong Zheng Yang Li Xue-Bao Li 《The Crop Journal》 SCIE CSCD 2024年第1期177-187,共11页
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu... Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05. 展开更多
关键词 Cotton(Gossypium hirsutum) BEL1-like transcription factor Drought stress transcriptional regulation Drought tolerance
下载PDF
An overview of pigment gland morphogenesis and its regulatory mechanism
20
作者 SUN Yue YANG Ping +5 位作者 HAN Yifei LI Huazu SUN Deli CHEN Jinhong ZHU Shuijin ZHAO Tianlun 《Journal of Cotton Research》 CAS 2024年第2期207-214,共8页
Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a comm... Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait. 展开更多
关键词 Cotton Pigment gland morphogenesis transcriptional regulation Terpenoids biosynthesis
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部