As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and dama...As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and damage. This work develops an efficient transient multi-level multi-dimensional(M2) analysis method to address photo-thermal-elastic problems, thereby estimating transient thermal load and deformation for the receiver:(i) one-dimensional(1-D) thermo-hydraulic model is adopted to determine the transient thermo-hydraulic state,(ii) 3-D finite volume method(FVM) model for the receiver tube is established to obtain the real-time temperature distribution,(iii) 3-D finite element method(FEM) model is employed to make thermoelastic analysis. Based on this M2 method, the typical transient cases are conducted in cold-start, disturbed-operation and regulatedprocess. Three indicators(average temperature of the wall(ATW), radial temperature difference(RTD), circumferential temperature difference(CTD)) are defined for overall analysis of the receiver thermal load. It is found that in the transient process,receivers face response delay and endure significant thermal load fluctuation. The response time for a single HCE(heat collecting element) under lower mass flow rate(1.5 kg s-1) could sustain 280 s. During the cold-start stage(DNI=200 W m-2 to 800 W m-2), the maximum value of CTD in receiver is as high as 11.67℃, corresponding to a maximum deflection of 1.05 cm.When the mass flow rate decreases sharply by 80%, the CTD reaches 33.04℃, causing a 2.06-cm deflection. It should be pointed out that in the cold-start stage and the lower mass flow rate operation for solar parabolic trough collector, alleviating the transient thermal load and deformation is of importance for safely and efficiently running evaluated receiver.展开更多
An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of t...An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of thermocouples are placed on different position such as the pad surface,leading and trailing edge as well as the pad block,and then these thermocouples are used to measure the temperature variation during the transient period.The load on one pad and the displacement of the runner are measured with different sensors.The effects of a sudden load change on temperature at different position of the pads are analyzed according to the experimental data.The influence of different initial conditions and the different load increment on temperature variation at the pad surface and pad body are obtained,and temperature responses at leading edge and trailing edge under different conditions are tested.This experimental study shows a significant effect of load increment and initial condition on the temperature distribution of bearing pad interface under sudden load change conditions,and the measurement of real oil film temperature is difficult due to the large thermal inertia of pad surface.展开更多
以单根直埋敷设的10 k V三芯电缆为研究对象,建立了电缆暂态热路模型,并将其简化等效为一阶RC热路,根据所建立模型推导了应急时间与线芯温度的关系式。同时,设计了直埋敷设电缆加载不同应急负荷时的温升实验,实测了各组实验的应急时间...以单根直埋敷设的10 k V三芯电缆为研究对象,建立了电缆暂态热路模型,并将其简化等效为一阶RC热路,根据所建立模型推导了应急时间与线芯温度的关系式。同时,设计了直埋敷设电缆加载不同应急负荷时的温升实验,实测了各组实验的应急时间。通过与应急时间计算值的对比,分析实验结果与误差,验证了理论计算的正确性,并得到不同应急负荷下的电缆应急时间变化规律,为电力部门指导电力电缆的运行提供理论支持.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51776156)the Key Project of National Natural Science Foundation of China (Grant No. 51436007)+1 种基金111 Project (Grant No.B16038)the Fundamental Research Funds for the Central Universities(Grant No. xjj2018195)。
文摘As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and damage. This work develops an efficient transient multi-level multi-dimensional(M2) analysis method to address photo-thermal-elastic problems, thereby estimating transient thermal load and deformation for the receiver:(i) one-dimensional(1-D) thermo-hydraulic model is adopted to determine the transient thermo-hydraulic state,(ii) 3-D finite volume method(FVM) model for the receiver tube is established to obtain the real-time temperature distribution,(iii) 3-D finite element method(FEM) model is employed to make thermoelastic analysis. Based on this M2 method, the typical transient cases are conducted in cold-start, disturbed-operation and regulatedprocess. Three indicators(average temperature of the wall(ATW), radial temperature difference(RTD), circumferential temperature difference(CTD)) are defined for overall analysis of the receiver thermal load. It is found that in the transient process,receivers face response delay and endure significant thermal load fluctuation. The response time for a single HCE(heat collecting element) under lower mass flow rate(1.5 kg s-1) could sustain 280 s. During the cold-start stage(DNI=200 W m-2 to 800 W m-2), the maximum value of CTD in receiver is as high as 11.67℃, corresponding to a maximum deflection of 1.05 cm.When the mass flow rate decreases sharply by 80%, the CTD reaches 33.04℃, causing a 2.06-cm deflection. It should be pointed out that in the cold-start stage and the lower mass flow rate operation for solar parabolic trough collector, alleviating the transient thermal load and deformation is of importance for safely and efficiently running evaluated receiver.
文摘An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of thermocouples are placed on different position such as the pad surface,leading and trailing edge as well as the pad block,and then these thermocouples are used to measure the temperature variation during the transient period.The load on one pad and the displacement of the runner are measured with different sensors.The effects of a sudden load change on temperature at different position of the pads are analyzed according to the experimental data.The influence of different initial conditions and the different load increment on temperature variation at the pad surface and pad body are obtained,and temperature responses at leading edge and trailing edge under different conditions are tested.This experimental study shows a significant effect of load increment and initial condition on the temperature distribution of bearing pad interface under sudden load change conditions,and the measurement of real oil film temperature is difficult due to the large thermal inertia of pad surface.
文摘以单根直埋敷设的10 k V三芯电缆为研究对象,建立了电缆暂态热路模型,并将其简化等效为一阶RC热路,根据所建立模型推导了应急时间与线芯温度的关系式。同时,设计了直埋敷设电缆加载不同应急负荷时的温升实验,实测了各组实验的应急时间。通过与应急时间计算值的对比,分析实验结果与误差,验证了理论计算的正确性,并得到不同应急负荷下的电缆应急时间变化规律,为电力部门指导电力电缆的运行提供理论支持.