A series of selective dissolution experunents were conducted on the hydrogeinc ferromanganese crusts collected near Line Island to study the geochemistry of Mn, Fe, Cu, Co, Ni and Ti. Despite of the fact that the very...A series of selective dissolution experunents were conducted on the hydrogeinc ferromanganese crusts collected near Line Island to study the geochemistry of Mn, Fe, Cu, Co, Ni and Ti. Despite of the fact that the very close intergrowth between amorphous ferric oxyhydroxides and 6-MnO2 exists in the hydrogenic ferromanganese crusts, there is no isomorphous substitution between iron and manganese. This is because the two elements in oxides have different crystal chemistry and geochemistry, such assertion bemg in agreement with the results of selective dissolution experiments. Transitional metal elements such as Cu, Co, Ni and Ti are enriched in different phases, i.e. Ni and Co are incorporated into 6-MnO2 while Cu and Ti are incorporated into ferric oxyhy- droxides. The distributions of the elements in amorphous ferric oxyhydroxides and δ-MnO2 are controlled by the existing states of the elements in the seawater and the crystal chemistry and geochemistry of these elements/inns in oxides.展开更多
The concentration of 39 trace elements in coal from the late Permian taken from the eastern Yunnan-western Guizhou region was determined using inductively coupled plasma mass spectrometry. It was found that the mean c...The concentration of 39 trace elements in coal from the late Permian taken from the eastern Yunnan-western Guizhou region was determined using inductively coupled plasma mass spectrometry. It was found that the mean content of Ti, V, Cr, Mo, Co, Ni, Y, and Zr is higher than the national average. The occurrence of Mn, Ni, and Co in the different coalfields is distinctly different. Most of the enriched transition metal elements exist mainly as inorganic minerals. In the Zhina coalfield, Co, Ni, and Nb are primarily associated with sulfur. Mn, Cs, and Mo are mostly sulfides. Almost all Co was organic and a significant part of the Ni is also organic in the Liupanshui coalfield. Cs, Co, and Ni are related to sulfur in the coal taken from eastern Yunnan. Carbonate is the main form of Mn in the coal from eastern Yunnan and the Liupanshui coalfield. Ti is the oxide in the coal samples where Ti is enriched. Zr is in the form of zircon in the samples where Zr is enriched. The situation for most of the transition metal elements is consistent with terrestrial genesis. Coal seams are universally influenced by the sea. The strongly seawater effected peat bog with a reductive and alkaline environment favors the relative enrichment of Mn. A reducing environment is conducive to transition metal element enrichment.展开更多
Anatase(TiO_2) has been widely used in photocatalysis. However, it can only absorb near-ultraviolet light with a wavelength below approximately 388 nm due to a wide band gap. Therefore a modification should be made ...Anatase(TiO_2) has been widely used in photocatalysis. However, it can only absorb near-ultraviolet light with a wavelength below approximately 388 nm due to a wide band gap. Therefore a modification should be made for anatase to increase its capability in utilizing more abundant visible light. We investigated the doped anatase with the most promising 3d transition metal elements, and the results showed that the visible light absorption intensity was increased significantly due to the reduced band gap and the cavitation effects. As compared to other 3d transition metals, Cu was found to be the most effective one in improving anatase photocatalytic effects. In addition, greater Cu concentration doped in the anatase increased the photocatalysis effects but reduced the anatase stability, therefore, an optimized Cu concentration should be considered to optimize the anatase photocatalysis activity.展开更多
基金supported by China Ocean Mineral Resources Research and Development Association (COMRA) (DY105-05-01-05)China Ministry of Education (205089)China National Natural Science Foundation (40076015).
文摘A series of selective dissolution experunents were conducted on the hydrogeinc ferromanganese crusts collected near Line Island to study the geochemistry of Mn, Fe, Cu, Co, Ni and Ti. Despite of the fact that the very close intergrowth between amorphous ferric oxyhydroxides and 6-MnO2 exists in the hydrogenic ferromanganese crusts, there is no isomorphous substitution between iron and manganese. This is because the two elements in oxides have different crystal chemistry and geochemistry, such assertion bemg in agreement with the results of selective dissolution experiments. Transitional metal elements such as Cu, Co, Ni and Ti are enriched in different phases, i.e. Ni and Co are incorporated into 6-MnO2 while Cu and Ti are incorporated into ferric oxyhy- droxides. The distributions of the elements in amorphous ferric oxyhydroxides and δ-MnO2 are controlled by the existing states of the elements in the seawater and the crystal chemistry and geochemistry of these elements/inns in oxides.
基金financially supported by the National Natural Science Foundation of China (No. 40730422)
文摘The concentration of 39 trace elements in coal from the late Permian taken from the eastern Yunnan-western Guizhou region was determined using inductively coupled plasma mass spectrometry. It was found that the mean content of Ti, V, Cr, Mo, Co, Ni, Y, and Zr is higher than the national average. The occurrence of Mn, Ni, and Co in the different coalfields is distinctly different. Most of the enriched transition metal elements exist mainly as inorganic minerals. In the Zhina coalfield, Co, Ni, and Nb are primarily associated with sulfur. Mn, Cs, and Mo are mostly sulfides. Almost all Co was organic and a significant part of the Ni is also organic in the Liupanshui coalfield. Cs, Co, and Ni are related to sulfur in the coal taken from eastern Yunnan. Carbonate is the main form of Mn in the coal from eastern Yunnan and the Liupanshui coalfield. Ti is the oxide in the coal samples where Ti is enriched. Zr is in the form of zircon in the samples where Zr is enriched. The situation for most of the transition metal elements is consistent with terrestrial genesis. Coal seams are universally influenced by the sea. The strongly seawater effected peat bog with a reductive and alkaline environment favors the relative enrichment of Mn. A reducing environment is conducive to transition metal element enrichment.
基金Funded by the National Natural Science Foundation of China(Nos.51604205 and 51774223)the Natural Science Foundation of Hubei Province(No.2016CFB268)+1 种基金the Fundamental Research Funds for the Central Universities(WUT:2016IVA046 and 2017IVB018)the Open Fund from Hubei Key Laboratory of Indust rial Fume and Dust Pollution Control(HBIK2015-02)
文摘Anatase(TiO_2) has been widely used in photocatalysis. However, it can only absorb near-ultraviolet light with a wavelength below approximately 388 nm due to a wide band gap. Therefore a modification should be made for anatase to increase its capability in utilizing more abundant visible light. We investigated the doped anatase with the most promising 3d transition metal elements, and the results showed that the visible light absorption intensity was increased significantly due to the reduced band gap and the cavitation effects. As compared to other 3d transition metals, Cu was found to be the most effective one in improving anatase photocatalytic effects. In addition, greater Cu concentration doped in the anatase increased the photocatalysis effects but reduced the anatase stability, therefore, an optimized Cu concentration should be considered to optimize the anatase photocatalysis activity.