An explicit congestion notification (ECN)-based distributed transport protocol,ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network),was proposed.The ARROW-WTCP enables feasible dep...An explicit congestion notification (ECN)-based distributed transport protocol,ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network),was proposed.The ARROW-WTCP enables feasible deployment of ARROW-TCP from wired to wireless networks by providing a joint design of source and router algorithms.The protocol obtains the actual capacity of the wireless channel by calculating the queue variation in base station (BS) and adjusts the congestion window by using the feedback from its bottleneck link.The simulation results show that the ARROW-WTCP achieves strong stability,max-min fairness in dynamic networks,fast convergence to efficiency without introducing much excess traffic,and almost full link utilization in the steady state.It outperforms the XCP-B (eXplicit Control Protocol Blind),the wireless version of XCP,in terms of stability,fairness,convergence and utilization in wireless networks.展开更多
This paper proposed a practical- feedback scheme for fountain codes based transportprotocol in space communications. In the proposed scheme, the sender is signaled by two types of acknowledgment (ACK) packets.Before...This paper proposed a practical- feedback scheme for fountain codes based transportprotocol in space communications. In the proposed scheme, the sender is signaled by two types of acknowledgment (ACK) packets.Before decoding, packet loss probability isestimated on the receiver side and encapsulated intoa soft ACKand sent to the sender.After decoding,decoding results are encapsulated into hard ACKsandsent to the sender. There are two contributionsin the proposed scheme: 1. Empl layer calculation instead layer statistics to estimate oying physical of application the packet loss probability of space channel, which can improvethe accuracy and practicality. 2. A cascade overhead-failure probability relationship between the sender and the receiver has been analyzed to help determine the exact numberof packetsneeded byfountain decoding.Simulations show that for space communications,compared with the existing space transport protocols, fountain codes based transport protoeolwith the proposed schemecan not only ensure transmission reliability, but also greatly improvelink utilization.展开更多
This paper discusses a transport protocol and its formal description techniques for local network. The transport layer function, the transport services and a transport protocol design in a local network architecture m...This paper discusses a transport protocol and its formal description techniques for local network. The transport layer function, the transport services and a transport protocol design in a local network architecture model are presented. A transport protocol specification using the finite state automata (FSA) is given. The correctness of the protocol is verified by using the reachability tree technique with respect to the protocol properties of completeness, deadlock and livelock freeness, termination and reachability.展开更多
As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the...As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the Internet, performs very well on wired networks. However, in the case of satellite channels, clue to the delay and transmission errors, TCP performance degrades significantly and bandwidth of satellite links can not be fully utilized. To improve the TCP performance, a new idea of placing a TCP spoofing proxy in the satellite is considered. A Novel Satellite Transport Protocol (NSTP) which takes advantage of the special properties of the satellite channel is also proposed. By using simulation, as compared with traditional TCPs, the on-board spoofing proxy integrated with the special transport protocol can significantly enhance throughput performance on the high BER satellite link, the time needed to transfer files and the bandwidth used in reverse path are sharply reduced.展开更多
In recent years, we need more bandwidth to enjoy entertainment contents such as video streaming, music and online gaming. To gain enough bandwidth, technologies that combine bandwidth by using multiple interfaces at s...In recent years, we need more bandwidth to enjoy entertainment contents such as video streaming, music and online gaming. To gain enough bandwidth, technologies that combine bandwidth by using multiple interfaces at same time are desired. Multipath transport protocols which combine multiple paths for packet delivery at the transport layer are a promising technology. Such protocols have a mechanism, called “packet scheduler”, to select the interface to send a packet. However, existing studies of the packet scheduler have not explicitly considered the compatibility of mobility with bonding of bandwidth. Therefore, when smartphone users move out of coverage of communication networks such as wireless Local Area Network (LAN) and Long Term Evolution (LTE) by vehicle, packet loss occurs, leading to a decrease of throughput. In this study, we propose a packet scheduler that selects an appropriate communication path so that packets can reach the peer before it moves out of the coverage. Based on routes of a vehicle and the position and communication range of the access point, the time at which a communication path will be lost is predicted. In addition, we employ MPQUIC (Multipath QUIC (Quick UDP Internet Connections)), which is a multipath transport protocol proposed as the extension of QUIC protocol, to reduce the ACK packet loss in multipath communication, and to reduce the time until the starts of retransmission. We evaluated the number of packet losses, the throughput and the time until starts of retransmission using a simulator and show the superiority of proposed method.展开更多
The active-fault-alarm (AFA) technologies and the dynamic protection mechanism of the optical network controlled by the multi-protocol label switching transport profile (MPLS-TP) are both studied in this article. ...The active-fault-alarm (AFA) technologies and the dynamic protection mechanism of the optical network controlled by the multi-protocol label switching transport profile (MPLS-TP) are both studied in this article. On this basis, an active dynamic pre-protection (ADPP) mechanism is proposed. This active dynamic pre-protection mechanism is allowed to establish a so called temporary protection path (TPP) for the work path before a potential fault occurs and to switch to TPP only after the fault occurs. It keeps the TPP flexibly only when it is in low- quality or fault state to realize dynamic protection even better and to achieve better resource utilization. Simulation results show that the proposed new mechanism has better performance in terms of the flexibility and the efficiency from the perspective of time.展开更多
Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMAlx wireless data network and Binary Runtime Environment for Wireless (BREW)...Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMAlx wireless data network and Binary Runtime Environment for Wireless (BREW) platform, adopting compression technologies of H.264 and QCP, a set of streaming media players are designed and implemented, and the principle, structure, key technologies and performance analysis of this system are introduced. This player works well in practice.展开更多
A new metric for performance evaluation of transport control protocol(TCP) overwireless channels based on the interference-limited characteristics of code division multipleaddress(CDMA) system is proposed.According to...A new metric for performance evaluation of transport control protocol(TCP) overwireless channels based on the interference-limited characteristics of code division multipleaddress(CDMA) system is proposed.According to the new metric,the performance of TCP over CDMAcorrelated channel for different protocol parameters and different versions is investigated.The resultsshow that appropriate selection of protocol parameters and packet error rate(PER) operation point canimprove significantly the capacity of packet-switched CDMA-based network.展开更多
In modern data centers, because of the deadline- agnostic congestion control in transmission control protocol (TCP), many deadline-sensitive flows can not finish before their deadlines. Therefore, providing a higher...In modern data centers, because of the deadline- agnostic congestion control in transmission control protocol (TCP), many deadline-sensitive flows can not finish before their deadlines. Therefore, providing a higher deadline meeting ratio becomes a critical challenge in the typical online data intensive (OLDI) ap- plications of data center networks (DCNs). However, a problem named as priority synchronization is found in this paper, which de- creases the deadline meeting ratio badly. To solve this problem, we propose a priority probability deceleration (P2D) deadline-aware TCP. By using the novel probabilistic deceleration, p2D prevents the priority synchronization problem. Simulation results show that P2D increases the deadline meeting ratio by 20% compared with D2TCP.展开更多
Satellite link characteristics drastically degrade transport control protocol (TCP) performance. An efficient performance enhancing scheme is proposed. The improvement of TCP performance over satellite-based Interue...Satellite link characteristics drastically degrade transport control protocol (TCP) performance. An efficient performance enhancing scheme is proposed. The improvement of TCP performance over satellite-based Interuet is accomplished by protocol transition gateways at each end of a satellite link. The protocol which runs over a satellite link executes the receiver-driven flow control and acknowledgements- and timeouts-based error control strategies. The validity of this TCP performance enhancing scheme is verified by a series of simulation experiments. Results show that the proposed scheme can efficiently enhance the TCP performance over satellite-based Internet and ensure that the available bandwidth resources of the satellite link are fully utilized.展开更多
In the vast majority of mobile applications, the Transmission Control Protocol (TCP) is still leveraged at the transport layer of the Internet’s protocol stack. But, in many cases, the performance of TCP over mobile ...In the vast majority of mobile applications, the Transmission Control Protocol (TCP) is still leveraged at the transport layer of the Internet’s protocol stack. But, in many cases, the performance of TCP over mobile networks has been proven sub-optimal in practice, thus causing substantial bottlenecks. Quick UDP Internet Connections (QUIC) is a new protocol, currently being standardized by the Internet Engineering Task Force (IETF), that aims at solving some of the inherent problems of TCP. The purpose of this paper is to provide a comprehensive overview of QUIC and compare the performance of QUIC and TCP in wireless networks. To compare QUIC with TCP under various transmission scenarios over LTE networks, the ns-3 network simulator has been employed. The simulations performed showed that 1) under good or average transmission conditions, QUIC is characterized by a better steady state throughput at the same time achieving quite lower file download times;and 2) under poor transmission conditions, the two protocols exhibit a similar performance.展开更多
Datacenters have become increasingly important to host a diverse range of cloud applications with mixed workloads. Traditional applications hosted by datacenters are throughput-oriented without delay requirements, but...Datacenters have become increasingly important to host a diverse range of cloud applications with mixed workloads. Traditional applications hosted by datacenters are throughput-oriented without delay requirements, but newer generations of cloud applications, such as web search, recommendations, and social networking, typically employ a tree-based Partition-Aggregate structure, which may incur bursts of traffic. As a result, flows in these applications have stringent latency requirements, i.e., flow deadlines need to be met in order to achieve a satisfactory user experience. To meet these flow deadlines, research efforts in the recent literature have attempted to redesign flow and congestion control protocols that are specific to datacenter networks. In this paper, we focus on the new array of deadline-sensitive flow control protocols, thoroughly investigate their underlying design principles, analyze the evolution of their designs, and evaluate the tradeoffs involved in their design choices.展开更多
Active queue management(AQM)is essential to prevent the degradation of quality of service in TCP/AQM systems with round-trip time(RTT)delay.RTT delays are primarily caused by packet-propagation delays,but they can als...Active queue management(AQM)is essential to prevent the degradation of quality of service in TCP/AQM systems with round-trip time(RTT)delay.RTT delays are primarily caused by packet-propagation delays,but they can also be caused by the processing time of queuing operations and dynamically changing network situations.This study focuses on the design and analysis of an AQM digital controller under time-delay uncertainty.The controller is based on the Smith predictor algorithm and is called the SMITHPI controller.This study also demonstrates the stability of the controller and its robustness against network parameter variations such as the number of TCP connections,time delays,and user datagram protocol flows.The performance,robustness,and effectiveness of the proposed SMITHPI controller are evaluated using the NS-2 simulator.Finally,the performance of the SMITHPI controller is compared with that of a well-known queue-based AQM,called the proportional-integral controller.展开更多
基金Projects(60873265,60903222) supported by the National Natural Science Foundation of China Project(IRT0661) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘An explicit congestion notification (ECN)-based distributed transport protocol,ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network),was proposed.The ARROW-WTCP enables feasible deployment of ARROW-TCP from wired to wireless networks by providing a joint design of source and router algorithms.The protocol obtains the actual capacity of the wireless channel by calculating the queue variation in base station (BS) and adjusts the congestion window by using the feedback from its bottleneck link.The simulation results show that the ARROW-WTCP achieves strong stability,max-min fairness in dynamic networks,fast convergence to efficiency without introducing much excess traffic,and almost full link utilization in the steady state.It outperforms the XCP-B (eXplicit Control Protocol Blind),the wireless version of XCP,in terms of stability,fairness,convergence and utilization in wireless networks.
基金supported by the National Natural Science Foundation of China (NSFC) under grant No. 61132002National Program on Key Basic Research Project of China (973 Program) under grant No. 2014CB340206+1 种基金the Creative Research Groups of NSFC under grant No. 61321061Aerospace Communications and Terminal Application Technologies Engineering Laboratory in Shenzhen under No.JCYJ20120619140254275
文摘This paper proposed a practical- feedback scheme for fountain codes based transportprotocol in space communications. In the proposed scheme, the sender is signaled by two types of acknowledgment (ACK) packets.Before decoding, packet loss probability isestimated on the receiver side and encapsulated intoa soft ACKand sent to the sender.After decoding,decoding results are encapsulated into hard ACKsandsent to the sender. There are two contributionsin the proposed scheme: 1. Empl layer calculation instead layer statistics to estimate oying physical of application the packet loss probability of space channel, which can improvethe accuracy and practicality. 2. A cascade overhead-failure probability relationship between the sender and the receiver has been analyzed to help determine the exact numberof packetsneeded byfountain decoding.Simulations show that for space communications,compared with the existing space transport protocols, fountain codes based transport protoeolwith the proposed schemecan not only ensure transmission reliability, but also greatly improvelink utilization.
文摘This paper discusses a transport protocol and its formal description techniques for local network. The transport layer function, the transport services and a transport protocol design in a local network architecture model are presented. A transport protocol specification using the finite state automata (FSA) is given. The correctness of the protocol is verified by using the reachability tree technique with respect to the protocol properties of completeness, deadlock and livelock freeness, termination and reachability.
文摘As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the Internet, performs very well on wired networks. However, in the case of satellite channels, clue to the delay and transmission errors, TCP performance degrades significantly and bandwidth of satellite links can not be fully utilized. To improve the TCP performance, a new idea of placing a TCP spoofing proxy in the satellite is considered. A Novel Satellite Transport Protocol (NSTP) which takes advantage of the special properties of the satellite channel is also proposed. By using simulation, as compared with traditional TCPs, the on-board spoofing proxy integrated with the special transport protocol can significantly enhance throughput performance on the high BER satellite link, the time needed to transfer files and the bandwidth used in reverse path are sharply reduced.
文摘In recent years, we need more bandwidth to enjoy entertainment contents such as video streaming, music and online gaming. To gain enough bandwidth, technologies that combine bandwidth by using multiple interfaces at same time are desired. Multipath transport protocols which combine multiple paths for packet delivery at the transport layer are a promising technology. Such protocols have a mechanism, called “packet scheduler”, to select the interface to send a packet. However, existing studies of the packet scheduler have not explicitly considered the compatibility of mobility with bonding of bandwidth. Therefore, when smartphone users move out of coverage of communication networks such as wireless Local Area Network (LAN) and Long Term Evolution (LTE) by vehicle, packet loss occurs, leading to a decrease of throughput. In this study, we propose a packet scheduler that selects an appropriate communication path so that packets can reach the peer before it moves out of the coverage. Based on routes of a vehicle and the position and communication range of the access point, the time at which a communication path will be lost is predicted. In addition, we employ MPQUIC (Multipath QUIC (Quick UDP Internet Connections)), which is a multipath transport protocol proposed as the extension of QUIC protocol, to reduce the ACK packet loss in multipath communication, and to reduce the time until the starts of retransmission. We evaluated the number of packet losses, the throughput and the time until starts of retransmission using a simulator and show the superiority of proposed method.
基金Supported by the National High Technology Research and Development Program of China(No. 2009AA01Z255, 2009AA01A345), the National Basic Research Program of China(No. 2007CB310705 ) and the National Natural Science Foundation of China(No. 60932004).
文摘The active-fault-alarm (AFA) technologies and the dynamic protection mechanism of the optical network controlled by the multi-protocol label switching transport profile (MPLS-TP) are both studied in this article. On this basis, an active dynamic pre-protection (ADPP) mechanism is proposed. This active dynamic pre-protection mechanism is allowed to establish a so called temporary protection path (TPP) for the work path before a potential fault occurs and to switch to TPP only after the fault occurs. It keeps the TPP flexibly only when it is in low- quality or fault state to realize dynamic protection even better and to achieve better resource utilization. Simulation results show that the proposed new mechanism has better performance in terms of the flexibility and the efficiency from the perspective of time.
文摘Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMAlx wireless data network and Binary Runtime Environment for Wireless (BREW) platform, adopting compression technologies of H.264 and QCP, a set of streaming media players are designed and implemented, and the principle, structure, key technologies and performance analysis of this system are introduced. This player works well in practice.
文摘A new metric for performance evaluation of transport control protocol(TCP) overwireless channels based on the interference-limited characteristics of code division multipleaddress(CDMA) system is proposed.According to the new metric,the performance of TCP over CDMAcorrelated channel for different protocol parameters and different versions is investigated.The resultsshow that appropriate selection of protocol parameters and packet error rate(PER) operation point canimprove significantly the capacity of packet-switched CDMA-based network.
基金supported by the National Natural Science Foundation of China(611630606110320461462007)
文摘In modern data centers, because of the deadline- agnostic congestion control in transmission control protocol (TCP), many deadline-sensitive flows can not finish before their deadlines. Therefore, providing a higher deadline meeting ratio becomes a critical challenge in the typical online data intensive (OLDI) ap- plications of data center networks (DCNs). However, a problem named as priority synchronization is found in this paper, which de- creases the deadline meeting ratio badly. To solve this problem, we propose a priority probability deceleration (P2D) deadline-aware TCP. By using the novel probabilistic deceleration, p2D prevents the priority synchronization problem. Simulation results show that P2D increases the deadline meeting ratio by 20% compared with D2TCP.
文摘Satellite link characteristics drastically degrade transport control protocol (TCP) performance. An efficient performance enhancing scheme is proposed. The improvement of TCP performance over satellite-based Interuet is accomplished by protocol transition gateways at each end of a satellite link. The protocol which runs over a satellite link executes the receiver-driven flow control and acknowledgements- and timeouts-based error control strategies. The validity of this TCP performance enhancing scheme is verified by a series of simulation experiments. Results show that the proposed scheme can efficiently enhance the TCP performance over satellite-based Internet and ensure that the available bandwidth resources of the satellite link are fully utilized.
文摘In the vast majority of mobile applications, the Transmission Control Protocol (TCP) is still leveraged at the transport layer of the Internet’s protocol stack. But, in many cases, the performance of TCP over mobile networks has been proven sub-optimal in practice, thus causing substantial bottlenecks. Quick UDP Internet Connections (QUIC) is a new protocol, currently being standardized by the Internet Engineering Task Force (IETF), that aims at solving some of the inherent problems of TCP. The purpose of this paper is to provide a comprehensive overview of QUIC and compare the performance of QUIC and TCP in wireless networks. To compare QUIC with TCP under various transmission scenarios over LTE networks, the ns-3 network simulator has been employed. The simulations performed showed that 1) under good or average transmission conditions, QUIC is characterized by a better steady state throughput at the same time achieving quite lower file download times;and 2) under poor transmission conditions, the two protocols exhibit a similar performance.
文摘Datacenters have become increasingly important to host a diverse range of cloud applications with mixed workloads. Traditional applications hosted by datacenters are throughput-oriented without delay requirements, but newer generations of cloud applications, such as web search, recommendations, and social networking, typically employ a tree-based Partition-Aggregate structure, which may incur bursts of traffic. As a result, flows in these applications have stringent latency requirements, i.e., flow deadlines need to be met in order to achieve a satisfactory user experience. To meet these flow deadlines, research efforts in the recent literature have attempted to redesign flow and congestion control protocols that are specific to datacenter networks. In this paper, we focus on the new array of deadline-sensitive flow control protocols, thoroughly investigate their underlying design principles, analyze the evolution of their designs, and evaluate the tradeoffs involved in their design choices.
文摘Active queue management(AQM)is essential to prevent the degradation of quality of service in TCP/AQM systems with round-trip time(RTT)delay.RTT delays are primarily caused by packet-propagation delays,but they can also be caused by the processing time of queuing operations and dynamically changing network situations.This study focuses on the design and analysis of an AQM digital controller under time-delay uncertainty.The controller is based on the Smith predictor algorithm and is called the SMITHPI controller.This study also demonstrates the stability of the controller and its robustness against network parameter variations such as the number of TCP connections,time delays,and user datagram protocol flows.The performance,robustness,and effectiveness of the proposed SMITHPI controller are evaluated using the NS-2 simulator.Finally,the performance of the SMITHPI controller is compared with that of a well-known queue-based AQM,called the proportional-integral controller.