We investigate the effects of jet production on the following parameters: pseudorapidity, transverse momentum and transverse mass distributions of secondary charged particles produced in pp-collisions at 1.8 Te V,usi...We investigate the effects of jet production on the following parameters: pseudorapidity, transverse momentum and transverse mass distributions of secondary charged particles produced in pp-collisions at 1.8 Te V,using the HIJING code. These distributions are analyzed for the whole range and for six selected regions of the polar angle as a function of the different number of jets. The obtained simulation results for these parameters are interpreted and discussed in connection to the increase observed in the multiplicity of secondary charged particles as a result of its multi-jet dependence, and are also discussed in comparison with the experimental results from the CDF Collaboration.展开更多
The transverse mass distributions of protons produced in Au-Au collisions at 8 A GeV and Pb-Pb collisions at 158 A GeV are calculated by using the Monte Carlo method in the framework of the multisource ideal gas model...The transverse mass distributions of protons produced in Au-Au collisions at 8 A GeV and Pb-Pb collisions at 158 A GeV are calculated by using the Monte Carlo method in the framework of the multisource ideal gas model.It is found that our calculated results are in agreement with the experimental data in nucleusnucleus collisions at high energies.展开更多
The transverse mass spectra of protons, pions, kaons, Lambda and Antilambda produced in central nucleus-nucleus collisions at high energies are described by using one-temperature and two-temperature emission pictures....The transverse mass spectra of protons, pions, kaons, Lambda and Antilambda produced in central nucleus-nucleus collisions at high energies are described by using one-temperature and two-temperature emission pictures. The calculated results are compared and found to be in good agreement with the experimental data of the E895, E866 and E917 Collaborations measured in central Au-Au collisions at the Alternating Gradient Synchrotron (AGS) energies and the NA49 Collaboration measured in central Pb-Pb collisions at the Super Proton Synchrotron (SPS) energies. It is demonstrated that the transverse mass distributions of protons, kaons, Lambda and Antilambda, except for Lambda hyperons produced in central Pb-Pb collisions at 158 A GeV, can be described by using the one-temperature emission picture, and for pions, we need to use the two-temperature emission picture.展开更多
The term “relativistic mass” defined by equation m=γm<sub>0</sub> with γ=(1-v<sup>2</sup>/c<sup>2</sup>)<sup>-1/2</sup> has a somewhat controversial history, based o...The term “relativistic mass” defined by equation m=γm<sub>0</sub> with γ=(1-v<sup>2</sup>/c<sup>2</sup>)<sup>-1/2</sup> has a somewhat controversial history, based on special relativity theory, mathematics, logic, intuition, experiment, and ontology. Key is the ontological framework, specifically whether the framework does or does not include gravity. This paper examines both cases, with detailed analysis of gravitomagnetism and of relativistic mass in collisions.展开更多
A. Einstein and H.A. Lorentz had found that the mass of an accelerated body traveling at relativistic velocity appears to depend on whether the acceleration is performed in the direction of motion or in a transverse d...A. Einstein and H.A. Lorentz had found that the mass of an accelerated body traveling at relativistic velocity appears to depend on whether the acceleration is performed in the direction of motion or in a transverse direction. E.P. Epstein rejected this result in the “Annalen der Physik”;he rather postulated an additional force that turns up when the body is accelerated in the longitudinal direction. It can be shown that the concept of an increased longitudinal mass is based on a simple mathematical error. When correcting this error, it turns out that Epstein’s additional, hidden force is indispensable in order to avoid an inner inconsistency of Special Relativity. It does most of the total work absorbed by the moving object, and is thus responsible for most of the increase in its energy (=mass), given the speed attained is relativistic. In other words: While the total force on the body needed to maintain a constant acceleration <em>a</em><sub>0</sub> is “<span style="white-space:nowrap;">(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1</sup><em>m</em><em>a</em><sub>0</sub>=<em>m</em><sub>0</sub>(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-3/2</sup><em>a</em><sub><em>0</em></sub></span>”, the technical force needed to maintain that acceleration amounts only to “<em>m</em><em>a</em><sub>0</sub>=<em><em>m</em><sub>0</sub>(1 - <em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1/2</sup><em>a</em><sub><em>0</em></sub></em>”. The total energy of two objects that undergo a symmetrical, elastic head-on collision is therefore not conserved during the collision, thus requiring the involvement of a hidden reservoir of energy. This result is confirmed by calculations that use the concept of momenergy. The phenomenon of an apparent disappearance of energy has been noticed in particle physics already (target-experiment), but its consequences have been ignored. Instead, an explanation has been given (reduced “energy of the center of mass”) which is inconsistent and violates the relativity principle.展开更多
This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suc...This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.展开更多
A mean position state based on the gauge invariant transverse vector potential is used to convert single-photon states in Hilbert space to photon wave packets in direct space. The resulting photon wave-mechanical desc...A mean position state based on the gauge invariant transverse vector potential is used to convert single-photon states in Hilbert space to photon wave packets in direct space. The resulting photon wave-mechanical description leads to scalar products which relate to covariant integration on the light cone. A new correlation matrix displays the spatial localization problem for single photons in an explicit manner in space-time. The correlation matrix essentially is the projection of the time-ordered Feynman photon propagator onto the transverse photon subspace. The present photon wave-mechanical formalism is generalized to two-photon dynamics. In the diamagnetic limit the transverse photon becomes massive in its interaction with matter, and the correlation matrix for massivephoton interaction, which can be used in studies of evanescent-photon mediated couplings, is analyzed. On the basis of the present formalism the existence of a dynamical near-field Aharonov-Bohm effect is predicted.展开更多
基金Supported by Higher Education Commission(HEC)Government of Pakistan under Indigenous5000 PhD Scholarship Program Batch-IV
文摘We investigate the effects of jet production on the following parameters: pseudorapidity, transverse momentum and transverse mass distributions of secondary charged particles produced in pp-collisions at 1.8 Te V,using the HIJING code. These distributions are analyzed for the whole range and for six selected regions of the polar angle as a function of the different number of jets. The obtained simulation results for these parameters are interpreted and discussed in connection to the increase observed in the multiplicity of secondary charged particles as a result of its multi-jet dependence, and are also discussed in comparison with the experimental results from the CDF Collaboration.
基金Supported by National Natural Science Foundation of China (10975095, 10675077) Natural Science Foundation of Shanxi Province (2007011005)
文摘The transverse mass distributions of protons produced in Au-Au collisions at 8 A GeV and Pb-Pb collisions at 158 A GeV are calculated by using the Monte Carlo method in the framework of the multisource ideal gas model.It is found that our calculated results are in agreement with the experimental data in nucleusnucleus collisions at high energies.
基金Supported by National Natural Science Foundation of China (10975095)Natural Science Foundation of Shanxi Province(2007011005)
文摘The transverse mass spectra of protons, pions, kaons, Lambda and Antilambda produced in central nucleus-nucleus collisions at high energies are described by using one-temperature and two-temperature emission pictures. The calculated results are compared and found to be in good agreement with the experimental data of the E895, E866 and E917 Collaborations measured in central Au-Au collisions at the Alternating Gradient Synchrotron (AGS) energies and the NA49 Collaboration measured in central Pb-Pb collisions at the Super Proton Synchrotron (SPS) energies. It is demonstrated that the transverse mass distributions of protons, kaons, Lambda and Antilambda, except for Lambda hyperons produced in central Pb-Pb collisions at 158 A GeV, can be described by using the one-temperature emission picture, and for pions, we need to use the two-temperature emission picture.
文摘The term “relativistic mass” defined by equation m=γm<sub>0</sub> with γ=(1-v<sup>2</sup>/c<sup>2</sup>)<sup>-1/2</sup> has a somewhat controversial history, based on special relativity theory, mathematics, logic, intuition, experiment, and ontology. Key is the ontological framework, specifically whether the framework does or does not include gravity. This paper examines both cases, with detailed analysis of gravitomagnetism and of relativistic mass in collisions.
文摘A. Einstein and H.A. Lorentz had found that the mass of an accelerated body traveling at relativistic velocity appears to depend on whether the acceleration is performed in the direction of motion or in a transverse direction. E.P. Epstein rejected this result in the “Annalen der Physik”;he rather postulated an additional force that turns up when the body is accelerated in the longitudinal direction. It can be shown that the concept of an increased longitudinal mass is based on a simple mathematical error. When correcting this error, it turns out that Epstein’s additional, hidden force is indispensable in order to avoid an inner inconsistency of Special Relativity. It does most of the total work absorbed by the moving object, and is thus responsible for most of the increase in its energy (=mass), given the speed attained is relativistic. In other words: While the total force on the body needed to maintain a constant acceleration <em>a</em><sub>0</sub> is “<span style="white-space:nowrap;">(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1</sup><em>m</em><em>a</em><sub>0</sub>=<em>m</em><sub>0</sub>(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-3/2</sup><em>a</em><sub><em>0</em></sub></span>”, the technical force needed to maintain that acceleration amounts only to “<em>m</em><em>a</em><sub>0</sub>=<em><em>m</em><sub>0</sub>(1 - <em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1/2</sup><em>a</em><sub><em>0</em></sub></em>”. The total energy of two objects that undergo a symmetrical, elastic head-on collision is therefore not conserved during the collision, thus requiring the involvement of a hidden reservoir of energy. This result is confirmed by calculations that use the concept of momenergy. The phenomenon of an apparent disappearance of energy has been noticed in particle physics already (target-experiment), but its consequences have been ignored. Instead, an explanation has been given (reduced “energy of the center of mass”) which is inconsistent and violates the relativity principle.
文摘This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.
文摘A mean position state based on the gauge invariant transverse vector potential is used to convert single-photon states in Hilbert space to photon wave packets in direct space. The resulting photon wave-mechanical description leads to scalar products which relate to covariant integration on the light cone. A new correlation matrix displays the spatial localization problem for single photons in an explicit manner in space-time. The correlation matrix essentially is the projection of the time-ordered Feynman photon propagator onto the transverse photon subspace. The present photon wave-mechanical formalism is generalized to two-photon dynamics. In the diamagnetic limit the transverse photon becomes massive in its interaction with matter, and the correlation matrix for massivephoton interaction, which can be used in studies of evanescent-photon mediated couplings, is analyzed. On the basis of the present formalism the existence of a dynamical near-field Aharonov-Bohm effect is predicted.