We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal p...We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal parameters and the transient junction temperature of the LDM are modeled and obtained according to the temperature of the thermistor integrated in the module.Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines,and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process.展开更多
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 60938002)the Special-funded Program on National Key Scientific Instruments and Equipment Development of China (Grant No. 2012YQ06016501)the Tianjin Research Program of Application Foundation and Advanced Technology,China (Grant No. 11JCYBJC04900)
文摘We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal parameters and the transient junction temperature of the LDM are modeled and obtained according to the temperature of the thermistor integrated in the module.Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines,and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process.