An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature...An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature and high pressure(LTHP) conditions.The ultrafast dynamics study is performed on Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi-2212) thin film under LTHP conditions.The superconducting(SC) phase transition has been observed by analyzing the ultrafast dynamics of Bi-2212 as a function of pressure and temperature.Our results suggest that the pump-probe spectroscopy system combined with a cryogenic DAC instrument is an effective method to study the physical mechanism of condensed matter physics at extreme conditions,especially for the SC phase transition.展开更多
The two-dimensional layered transition metal dichalcogenides provide new opportunities in future valley-based in- formation processing and also provide an ideal platform to study excitonic effects. At the center of va...The two-dimensional layered transition metal dichalcogenides provide new opportunities in future valley-based in- formation processing and also provide an ideal platform to study excitonic effects. At the center of various device physics toward their possible electronic and optoelectronic applications is understanding the dynamical evolution of various many- particle electronic states, especially exciton which dominates the optoelectronic response of TMDs, under the novel con- text of valley degree of freedom. Here, we provide a brief review of experimental advances in using helicity-resolved ultrafast spectroscopy, especially ultrafast pump-probe spectroscopy, to study the dynamical evolution of valley-related many-particle electronic states in semiconducting monolayer transitional metal dichalcogenides.展开更多
Layered materials exhibit different electronic and phonon properties along in-plane and out-of-plane directions;existing studies focus on their in-plane behaviors,and the influence of such anisotropies on the dynamics...Layered materials exhibit different electronic and phonon properties along in-plane and out-of-plane directions;existing studies focus on their in-plane behaviors,and the influence of such anisotropies on the dynamics of photocarriers and phonons is unknown.Here,we fabricate layered PdSe_(2)crystals with flat edge surfaces and compare the time-resolved ultrafast spectroscopies on their basal and edge surfaces.Pronounced differences in the transient reflection spectroscopies reveal the inconsistent photocarrier and phonon dynamics behaviors on the two surfaces:the slow hot carrier relaxation process is accelerated and the thermoelasticity-induced longitudinal coherent acoustic phonon oscillation completely vanishes on the edge surface,as compared with the basal surface.Theoretical analysis reveals that the inconsistent hot carrier dynamics originate from the anisotropic properties of low-energy phonons in PdSe_(2),and the absence of phonon oscillation on the edge surface results from the wavevector-limited sensitivity of acoustic B_(1u)mode.Moreover,polarization-dependent spectroscopies indicate the diverse optical anisotropies beyond the in-plane of PdSe_(2).This work provides a new method to explore unique physical properties and modulate the optical anisotropy of layered materials.展开更多
Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here...Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here,we report the preliminary diagnostic measurements after relative sensitivity calibration.The measurement results show a much higher temporal resolution compared with conventional CXRS,benefiting from the usage of a prismcoupled,high-dispersion volume-phase holographic transmission grating and a high quantum efficiency,high-gain detector array.Utilizing the UF-CXRS diagnostic,the fast evolutions of the ion temperature and rotation velocity during a set of high-frequency small-amplitude edgelocalized modes(ELMs)are obtained on the EAST tokamak,which are then compared with the case of large-amplitude ELMs.展开更多
Three decades ago,a highly nonlinear nonpertubative phenomenon,now well-known as the high harmonic generation(HHG),was discovered when intense laser irradiates gaseous atoms.As the HHG produces broadband coherent radi...Three decades ago,a highly nonlinear nonpertubative phenomenon,now well-known as the high harmonic generation(HHG),was discovered when intense laser irradiates gaseous atoms.As the HHG produces broadband coherent radiation,it becomes the most promising source to obtain attosecond pulses.The door to the attosecond science was opened ever since.In this review,we will revisit the incredible adventure to the attoworld.Firstly,the progress of attosecond pulse generation is outlined.Then,we introduce the efforts on imaging the structures or filming the ultrafast dynamics of nuclei and electrons with unprecedented attosecond temporal and Angstrom spatial resolutions,utilizing the obtained attosecond pulses as well as the high harmonic spectrum itself.展开更多
Defect-mediated processes in two-dimensional transition metal dichalcogenides have a significant influence on their carrier dynamics and transport properties,however,the detailed mechanisms remain poorly understood.He...Defect-mediated processes in two-dimensional transition metal dichalcogenides have a significant influence on their carrier dynamics and transport properties,however,the detailed mechanisms remain poorly understood.Here,we present a comprehensive ultrafast study on defect-mediated carrier dynamics in ion exchange prepared few-layer MoS2 by femtosecond time-resolved Vis-NIR-MIR spectroscopy.The broadband photobleaching feature observed in the near-infrared transient spectrum discloses that the mid-gap defect states are widely distributed in few-layer MoS2 nanosheets.The processes of fast trapping of carriers by defect states and the following nonradiative recombination of trapped carriers are clearly revealed,demonstrating the mid-gap defect states play a significant role in the photoinduced carrier dynamics.The positive to negative crossover of the signal observed in the mid-infrared transient spectrum further uncovers some occupied shallow defect states distributed at less than0.24 e V below the conduction band minimum.These defect states can act as effective carrier trap centers to assist the nonradiative recombination of photo-induced carriers in few-layer MoS2 on the picosecond time scale.展开更多
Two-dimensional transition metal dichalcogenides(TMDs)have intriguing physic properties and offer an exciting platform to explore many features that are important for future devices.In this work,we synthesized monolay...Two-dimensional transition metal dichalcogenides(TMDs)have intriguing physic properties and offer an exciting platform to explore many features that are important for future devices.In this work,we synthesized monolayer WS_(2)as an example to study the optical response with hydrostatic pressure.The Raman results show a continuous tuning of the lattice vibrations that is induced by hydrostatic pressure.We further demonstrate an efficient pressure-induced change of the band structure and carrier dynamics via transient absorption measurements.We found that two time constants can be attributed to the capture process of two kinds of defect states,with the pressure increasing from 0.55 GPa to 2.91 GPa,both of capture processes were accelerated,and there is an inflection point within the pressure range of 1.56 GPa to 1.89 GPa.Our findings provide valuable information for the design of future optoelectronic devices.展开更多
Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monome...Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monomeric water shows a bi-exponential decay. The fast compo- nent (T1=(1.2±0.1) ps) is caused by the rapid population equilibration between the vibrational modes of the monomeric water molecule. The slow component (T2=(26.4±0.2) ps) is mainly caused by the vibrational population decay of OH bending mode. The reorientation of the OH bending in monomeric water is determined with a time constant of t=(1.2±0.1) ps which is much faster than the rotational dynamics of water molecules in the bulk solution. Furthermore, we are able to reveal the direct vibrational energy transfer from OH stretching to OH bending in monomeric water dissolved in d-chloroform for the first time. The vibrational coupling and relative orientation of transition dipole moment between OH bending and stretching that effect their intra-molecular vibrational energy transfer rates are discussed in detail.展开更多
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d...Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.展开更多
Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have bee...Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.展开更多
Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result...Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtoseeond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.展开更多
Polarization dependent time-resolved infrared (TRIR) spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process. The angular information of transient species is obta...Polarization dependent time-resolved infrared (TRIR) spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process. The angular information of transient species is obtainable in this measurement, which makes it a valuable technique for the investigation of electron distribution, molecular structure, and conformational dynamics. In this review, we briefly introduce the principles and applications of polarization dependent TRIR spectroscopy. We mainly focused on the following topics: (i) an overview of TRIR spectroscopy, (ii) principles of TRIR spectroscopy and its advantages compared to the other ultrafast techniques, (iii) examples that use polarization dependent TRIR spectroscopy to probe a variety of cheinical and dynamical phenomena including protein conformational dynamics, excited state electron localization, and photoisomerization, (iv) the limitations and prospects of TRIR spectroscopy.展开更多
Internal solvation of protein was studied by site-directed mutagenesis, with which an intrinsically fluorescent probe,tryptophan, is inserted into the desired position inside a protein molecule for ultrafast spectrosc...Internal solvation of protein was studied by site-directed mutagenesis, with which an intrinsically fluorescent probe,tryptophan, is inserted into the desired position inside a protein molecule for ultrafast spectroscopic study. Here we review this unique method for protein dynamics research. We first introduce the frontiers of protein solvation, site-directed mutagenesis, protein stability and characteristics, and the spectroscopic methods. Then we present time-resolved spectroscopic dynamics of solvation dynamics inside cavities of active sites. The studies are carried out on a globular protein, staphylococcal nuclease. The solvation at sites inside the protein molecule's cavities clearly reveals characteristics of the local environment. These solvation behaviors are directly correlated to enzyme activity.展开更多
Terahertz time-domain spectroscopy (THz-TDS) is used to study the interaction between AlCl3 and o-xylene in a temperature range from 300 K to 368 K. For comparison, the three isomers of o-, m-, and p-xylene are meas...Terahertz time-domain spectroscopy (THz-TDS) is used to study the interaction between AlCl3 and o-xylene in a temperature range from 300 K to 368 K. For comparison, the three isomers of o-, m-, and p-xylene are measured by using THz-TDS. The o-xylene carries out isomerization reaction in the presence of catalyst AlCl3. The absorption coefficient of the mixed reaction solution is extracted and analyzed in the frequency range from 0.2 THz to 1.4 THz. The temperature dependence of the absorption coefficient, which is influenced by both the dissolution of AlCl3 and the production of the two other isomer resultants, is obtained, and it can indicate the process of the isomerization reaction. The results suggest that THz spectroscopy can be used to monitor the isomerization reaction and other reactions in chemical synthesis, petrochemical and biomedical fields.展开更多
Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample ...Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, greatly facilitate the identification of the photo-induced absorption signal of one tube species. It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the E11 state. This finding prompts a new explanation for the origin of the photo-induced absorption: the transition from the ground state to a phonon coupled state near the E ii state. The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals, which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes. The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.展开更多
Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric network...Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric networks of the hydrogels is crucial to elucidate their mechanical and swelling properties at the molecular level.In this report,the poly(DMAEMA-co-AA)hydrogels were synthesized and characterized by the macroscopic swelling measurements under different pH conditions.Furthermore,the microscopic structural dynamics of pH stimulus-responsive hydrogels were studied using FTIR and ultrafast IR spectroscopies from the viewpoint of the SCN-anionic solute as the local vibrational reporter.Ultrafast IR spectroscopic measurements showed the time constants of the vibrational population decay of SCN-were increased from 14±1 ps to 20±1 ps when the pH of the hydrogels varied from2.0 to 12.0.Rotational anisotropy measurements further revealed that the rotation of SCNanionic probe was restricted by the three-dimensional network formed in the hydrogels and the rotation of SCN-anionic probe cannot decay to zero especially at the pH of 7.0.These results are expected to provide a molecular-level understanding of the microscopic structure of the cross-linked polymeric network in the pH stimulus-responsive hydrogels.展开更多
We use ultrafast optical spectroscopy to study the nonequilibrium quasiparticle relaxation dynamics of the iron-based superconductor KCa_(2)Fe_(4)A_(s4)F_(2)with T_(c)= 33.5 K. Our results reveal a possible pseudogap(...We use ultrafast optical spectroscopy to study the nonequilibrium quasiparticle relaxation dynamics of the iron-based superconductor KCa_(2)Fe_(4)A_(s4)F_(2)with T_(c)= 33.5 K. Our results reveal a possible pseudogap(△_(PG)=(2.4 ± 0.1) me V) below T*≈ 50 K but prior to the opening of a superconducting gap(△SC(0) ≈(4.3 ± 0.1) me V). Measurements under high pump fluence reveal two distinct, coherent phonon oscillations with 1.95 and 5.51 THz frequencies, respectively. The high-frequency A1 g(2) mode corresponds to the c-axis polarized vibrations of Fe As planes with a nominal electron-phonon coupling constant λA1 g(2)= 0.194 ± 0.02.Our findings suggest that the pseudogap is likely a precursor of superconductivity, and the electron-phonon coupling may play an essential role in the superconducting pairing in KCa_(2)Fe_(4)A_(s4)F_(2).展开更多
In this work,the fundamental mechanism of ultrabright fluorescence from surface-modified colloidal silicon quantum dots is investigated in depth using ultrafast spectroscopy.The underlying energy band structure corres...In this work,the fundamental mechanism of ultrabright fluorescence from surface-modified colloidal silicon quantum dots is investigated in depth using ultrafast spectroscopy.The underlying energy band structure corresponding to such highly efficient direct bandgap-like emissions in our surface-modified silicon quantum dots is unraveled by analyzing the transient optical spectrum,which demonstrates the significant effect of surface molecular engineering.It is observed that special surface modification,which creates novel surface states,is responsible for the different emission wavelengths and the significant improvement in the photoluminescence quantum yields.Following this essential understanding,surface-modified silicon quantum dots with deep blue to orange emission are successfully prepared without changing their sizes.展开更多
Photocatalytic N_(2)xation has attracted substantial attention in recent years,as it represents a green and sustainable devel-opment route toward effciently convert-ing N_(2)to NH_(3)for industrial applications.How to...Photocatalytic N_(2)xation has attracted substantial attention in recent years,as it represents a green and sustainable devel-opment route toward effciently convert-ing N_(2)to NH_(3)for industrial applications.How to rationally design catalysts in this regard remains a challenge.Here we pro-pose a strategy that uses plasmonic hot electrons in the highly doped TiO_(2)to ac-tivate the inert N_(2)molecules.The synthesized semiconductor catalyst Mo-doped TiO_(2)shows a NH_(3)production effciency as high as 134μmol·g^(-1)·h^(-1)under ambient conditions,which is comparable to that achieved by the conventional plasmonic gold metal.By means of ultra-fast spectroscopy we reveal that the plasmonic hot electrons in the system are responsible for the activation of N_(2)molecules,enabling improvement the catalytic activity of TiO_(2).This work opens a new avenue toward semiconductor plasmon-based photocatalytic N_(2)xation.展开更多
We report an ultrafast spectroscopy investigation that addresses the subtle location effect in a prototypical semiconductor-MOF hybrid system with TiO2 nanoparticles being incorporated inside or supported onto Cu3(BTC...We report an ultrafast spectroscopy investigation that addresses the subtle location effect in a prototypical semiconductor-MOF hybrid system with TiO2 nanoparticles being incorporated inside or supported onto Cu3(BTC)2,denoted as TiO2@Cu3(BTC)2 and TiO2/Cu3(BTC)2,respectively.By tracking in real time the interface electron dynamics in the hybrid system,we find that the interface states formed between TiO2 and Cu3(BTC)2 can act as an effective relay for electron transfer,whose effciency rests on the relative location of the two components.It is such a subtle location effect that brings on difference in photocatalytic CO2 reduction using the two semiconductor-MOF hybrids.The mechanistic understanding of the involved interface electron-transfer behavior and effect opens a helpful perspective for rational design of MOF-based hybrid systems for photoelectrochemical applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12274168 and 12074141)。
文摘An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature and high pressure(LTHP) conditions.The ultrafast dynamics study is performed on Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi-2212) thin film under LTHP conditions.The superconducting(SC) phase transition has been observed by analyzing the ultrafast dynamics of Bi-2212 as a function of pressure and temperature.Our results suggest that the pump-probe spectroscopy system combined with a cryogenic DAC instrument is an effective method to study the physical mechanism of condensed matter physics at extreme conditions,especially for the SC phase transition.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB921300 and 2014CB920900)the National Key Research and Development Program of China(Grant No.2016YFA0300802)+1 种基金the National Natural Science Foundation of China(Grant Nos.11274015,11674013,and 21405109)the Recruitment Program of Global Experts,China,and Beijing Natural Science Foundation,China(Grant No.4142024)
文摘The two-dimensional layered transition metal dichalcogenides provide new opportunities in future valley-based in- formation processing and also provide an ideal platform to study excitonic effects. At the center of various device physics toward their possible electronic and optoelectronic applications is understanding the dynamical evolution of various many- particle electronic states, especially exciton which dominates the optoelectronic response of TMDs, under the novel con- text of valley degree of freedom. Here, we provide a brief review of experimental advances in using helicity-resolved ultrafast spectroscopy, especially ultrafast pump-probe spectroscopy, to study the dynamical evolution of valley-related many-particle electronic states in semiconducting monolayer transitional metal dichalcogenides.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074202,and 12174207)the Natural Science Foundation of Tianjin City(Grant No.22JCYBJC00390)the Fundamental Research Funds for the Central Universities-Nankai University(Grant No.63231065)。
文摘Layered materials exhibit different electronic and phonon properties along in-plane and out-of-plane directions;existing studies focus on their in-plane behaviors,and the influence of such anisotropies on the dynamics of photocarriers and phonons is unknown.Here,we fabricate layered PdSe_(2)crystals with flat edge surfaces and compare the time-resolved ultrafast spectroscopies on their basal and edge surfaces.Pronounced differences in the transient reflection spectroscopies reveal the inconsistent photocarrier and phonon dynamics behaviors on the two surfaces:the slow hot carrier relaxation process is accelerated and the thermoelasticity-induced longitudinal coherent acoustic phonon oscillation completely vanishes on the edge surface,as compared with the basal surface.Theoretical analysis reveals that the inconsistent hot carrier dynamics originate from the anisotropic properties of low-energy phonons in PdSe_(2),and the absence of phonon oscillation on the edge surface results from the wavevector-limited sensitivity of acoustic B_(1u)mode.Moreover,polarization-dependent spectroscopies indicate the diverse optical anisotropies beyond the in-plane of PdSe_(2).This work provides a new method to explore unique physical properties and modulate the optical anisotropy of layered materials.
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 2019YFE 03030004)National Natural Science Foundation of China (Nos. 11535013 and 11975232)
文摘Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here,we report the preliminary diagnostic measurements after relative sensitivity calibration.The measurement results show a much higher temporal resolution compared with conventional CXRS,benefiting from the usage of a prismcoupled,high-dispersion volume-phase holographic transmission grating and a high quantum efficiency,high-gain detector array.Utilizing the UF-CXRS diagnostic,the fast evolutions of the ion temperature and rotation velocity during a set of high-frequency small-amplitude edgelocalized modes(ELMs)are obtained on the EAST tokamak,which are then compared with the case of large-amplitude ELMs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12021004 and 91950202)
文摘Three decades ago,a highly nonlinear nonpertubative phenomenon,now well-known as the high harmonic generation(HHG),was discovered when intense laser irradiates gaseous atoms.As the HHG produces broadband coherent radiation,it becomes the most promising source to obtain attosecond pulses.The door to the attosecond science was opened ever since.In this review,we will revisit the incredible adventure to the attoworld.Firstly,the progress of attosecond pulse generation is outlined.Then,we introduce the efforts on imaging the structures or filming the ultrafast dynamics of nuclei and electrons with unprecedented attosecond temporal and Angstrom spatial resolutions,utilizing the obtained attosecond pulses as well as the high harmonic spectrum itself.
基金supported by the National Key Research and Development Program of China(No.2018YFA0208700)the National Natural Science Foundation of China(No.21603270 and No.21773302)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB30000000)。
文摘Defect-mediated processes in two-dimensional transition metal dichalcogenides have a significant influence on their carrier dynamics and transport properties,however,the detailed mechanisms remain poorly understood.Here,we present a comprehensive ultrafast study on defect-mediated carrier dynamics in ion exchange prepared few-layer MoS2 by femtosecond time-resolved Vis-NIR-MIR spectroscopy.The broadband photobleaching feature observed in the near-infrared transient spectrum discloses that the mid-gap defect states are widely distributed in few-layer MoS2 nanosheets.The processes of fast trapping of carriers by defect states and the following nonradiative recombination of trapped carriers are clearly revealed,demonstrating the mid-gap defect states play a significant role in the photoinduced carrier dynamics.The positive to negative crossover of the signal observed in the mid-infrared transient spectrum further uncovers some occupied shallow defect states distributed at less than0.24 e V below the conduction band minimum.These defect states can act as effective carrier trap centers to assist the nonradiative recombination of photo-induced carriers in few-layer MoS2 on the picosecond time scale.
基金This work was supported by Shenzhen Science and Technology Innovation Commission(JCYJ20220530153004010).
文摘Two-dimensional transition metal dichalcogenides(TMDs)have intriguing physic properties and offer an exciting platform to explore many features that are important for future devices.In this work,we synthesized monolayer WS_(2)as an example to study the optical response with hydrostatic pressure.The Raman results show a continuous tuning of the lattice vibrations that is induced by hydrostatic pressure.We further demonstrate an efficient pressure-induced change of the band structure and carrier dynamics via transient absorption measurements.We found that two time constants can be attributed to the capture process of two kinds of defect states,with the pressure increasing from 0.55 GPa to 2.91 GPa,both of capture processes were accelerated,and there is an inflection point within the pressure range of 1.56 GPa to 1.89 GPa.Our findings provide valuable information for the design of future optoelectronic devices.
文摘Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monomeric water shows a bi-exponential decay. The fast compo- nent (T1=(1.2±0.1) ps) is caused by the rapid population equilibration between the vibrational modes of the monomeric water molecule. The slow component (T2=(26.4±0.2) ps) is mainly caused by the vibrational population decay of OH bending mode. The reorientation of the OH bending in monomeric water is determined with a time constant of t=(1.2±0.1) ps which is much faster than the rotational dynamics of water molecules in the bulk solution. Furthermore, we are able to reveal the direct vibrational energy transfer from OH stretching to OH bending in monomeric water dissolved in d-chloroform for the first time. The vibrational coupling and relative orientation of transition dipole moment between OH bending and stretching that effect their intra-molecular vibrational energy transfer rates are discussed in detail.
基金Project supported by the Science Challenge Project(Grant No.TZ2018001)the National Natural Science Foundation of China(Grant Nos.11872058 and 21802036)the Project of State Key Laboratory of Environment-friendly Energy Materials,and Southwest University of Science and Technology(Grant No.21fksy07)。
文摘Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200403)the National Natural Science Foundation of China (Grant Nos.91950204 and 92150302)。
文摘Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.
基金supported by the National Natural Science Foundation of China (Grant Nos.60878018 and 61008023)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China (Grant No.HIT.NSRIF.2009009)the Science and Technology Innovation Foundation,Harbin,China (Grant No.RC2007QN017030)
文摘Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtoseeond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.
文摘Polarization dependent time-resolved infrared (TRIR) spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process. The angular information of transient species is obtainable in this measurement, which makes it a valuable technique for the investigation of electron distribution, molecular structure, and conformational dynamics. In this review, we briefly introduce the principles and applications of polarization dependent TRIR spectroscopy. We mainly focused on the following topics: (i) an overview of TRIR spectroscopy, (ii) principles of TRIR spectroscopy and its advantages compared to the other ultrafast techniques, (iii) examples that use polarization dependent TRIR spectroscopy to probe a variety of cheinical and dynamical phenomena including protein conformational dynamics, excited state electron localization, and photoisomerization, (iv) the limitations and prospects of TRIR spectroscopy.
基金Project supported by the National Basic Research Program of China(Grant Nos.2013CB921904,2009CB930504,and 2013CB328700)the National Natural Science Foundation of China(Grant Nos.11074016,11121091,10934001,61177020,11134001,and 10828407)
文摘Internal solvation of protein was studied by site-directed mutagenesis, with which an intrinsically fluorescent probe,tryptophan, is inserted into the desired position inside a protein molecule for ultrafast spectroscopic study. Here we review this unique method for protein dynamics research. We first introduce the frontiers of protein solvation, site-directed mutagenesis, protein stability and characteristics, and the spectroscopic methods. Then we present time-resolved spectroscopic dynamics of solvation dynamics inside cavities of active sites. The studies are carried out on a globular protein, staphylococcal nuclease. The solvation at sites inside the protein molecule's cavities clearly reveals characteristics of the local environment. These solvation behaviors are directly correlated to enzyme activity.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328706)the Specially Funded Program on National Key Scientific Instruments and Equipment Development,China(Grant No.2012YQ14005)+1 种基金the Beijing National Science Foundation,China(Grant No.4122064)the Science Foundation of the China University of Petroleum(Beijing)(Grant Nos.QZDX-2010-01 and KYJJ2012-06-27)
文摘Terahertz time-domain spectroscopy (THz-TDS) is used to study the interaction between AlCl3 and o-xylene in a temperature range from 300 K to 368 K. For comparison, the three isomers of o-, m-, and p-xylene are measured by using THz-TDS. The o-xylene carries out isomerization reaction in the presence of catalyst AlCl3. The absorption coefficient of the mixed reaction solution is extracted and analyzed in the frequency range from 0.2 THz to 1.4 THz. The temperature dependence of the absorption coefficient, which is influenced by both the dissolution of AlCl3 and the production of the two other isomer resultants, is obtained, and it can indicate the process of the isomerization reaction. The results suggest that THz spectroscopy can be used to monitor the isomerization reaction and other reactions in chemical synthesis, petrochemical and biomedical fields.
文摘Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, greatly facilitate the identification of the photo-induced absorption signal of one tube species. It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the E11 state. This finding prompts a new explanation for the origin of the photo-induced absorption: the transition from the ground state to a phonon coupled state near the E ii state. The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals, which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes. The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.
基金supported by the National Natural Science Foundation of China(No.21873062)the Fundamental Research Funds for the Central Universities(GK202001009)+2 种基金the Natural Science Basis Research Plan in Shaanxi Province of China(No.2020JM-295)the 111 Project(B14041)Program for Changjiang Scholars and the Innovative Research Team in University(IRT-14R33)。
文摘Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric networks of the hydrogels is crucial to elucidate their mechanical and swelling properties at the molecular level.In this report,the poly(DMAEMA-co-AA)hydrogels were synthesized and characterized by the macroscopic swelling measurements under different pH conditions.Furthermore,the microscopic structural dynamics of pH stimulus-responsive hydrogels were studied using FTIR and ultrafast IR spectroscopies from the viewpoint of the SCN-anionic solute as the local vibrational reporter.Ultrafast IR spectroscopic measurements showed the time constants of the vibrational population decay of SCN-were increased from 14±1 ps to 20±1 ps when the pH of the hydrogels varied from2.0 to 12.0.Rotational anisotropy measurements further revealed that the rotation of SCNanionic probe was restricted by the three-dimensional network formed in the hydrogels and the rotation of SCN-anionic probe cannot decay to zero especially at the pH of 7.0.These results are expected to provide a molecular-level understanding of the microscopic structure of the cross-linked polymeric network in the pH stimulus-responsive hydrogels.
基金supported by the National Natural Science Foundation of China(Grant Nos.51502351,12074436,U2032204,11822411,11961160699,and 11874401)the National Key Research and Development Program of China(Grant Nos.2018YFA0704200,2017YFA0303100+6 种基金2017YFA0302900)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant Nos.XDB25000000XDB07020300)the K.C.Wong Education Foundation(Grant No.GJTD-2020-01)support from the Innovation-driven Plan in Central South University(Grant No.2016CXS032)the support from the Youth Innovation Promotion Association of CAS(Grant No.Y202001)the Beijing Natural Science Foundation(Grant No.JQ19002)。
文摘We use ultrafast optical spectroscopy to study the nonequilibrium quasiparticle relaxation dynamics of the iron-based superconductor KCa_(2)Fe_(4)A_(s4)F_(2)with T_(c)= 33.5 K. Our results reveal a possible pseudogap(△_(PG)=(2.4 ± 0.1) me V) below T*≈ 50 K but prior to the opening of a superconducting gap(△SC(0) ≈(4.3 ± 0.1) me V). Measurements under high pump fluence reveal two distinct, coherent phonon oscillations with 1.95 and 5.51 THz frequencies, respectively. The high-frequency A1 g(2) mode corresponds to the c-axis polarized vibrations of Fe As planes with a nominal electron-phonon coupling constant λA1 g(2)= 0.194 ± 0.02.Our findings suggest that the pseudogap is likely a precursor of superconductivity, and the electron-phonon coupling may play an essential role in the superconducting pairing in KCa_(2)Fe_(4)A_(s4)F_(2).
基金HBS thanks the Natural Science Foundation of China(NSFC)under Grant Nos.91423102,21273096,91323301 and 11104109the National Basic Research Program of China(973 Program)under Grant No.2014CB921302 for support.
文摘In this work,the fundamental mechanism of ultrabright fluorescence from surface-modified colloidal silicon quantum dots is investigated in depth using ultrafast spectroscopy.The underlying energy band structure corresponding to such highly efficient direct bandgap-like emissions in our surface-modified silicon quantum dots is unraveled by analyzing the transient optical spectrum,which demonstrates the significant effect of surface molecular engineering.It is observed that special surface modification,which creates novel surface states,is responsible for the different emission wavelengths and the significant improvement in the photoluminescence quantum yields.Following this essential understanding,surface-modified silicon quantum dots with deep blue to orange emission are successfully prepared without changing their sizes.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFA0200602 and No.2018YFA0208702)the National Natural Science Foundation of China(No.21633007,No.21573211,No.21803067,and No.91950207)+1 种基金the Anhui Initiative in Quantum In-formation Technologies(No.AHY090200)the USTC-NSRL Joint Funds(No.UN2018LHJJ).
文摘Photocatalytic N_(2)xation has attracted substantial attention in recent years,as it represents a green and sustainable devel-opment route toward effciently convert-ing N_(2)to NH_(3)for industrial applications.How to rationally design catalysts in this regard remains a challenge.Here we pro-pose a strategy that uses plasmonic hot electrons in the highly doped TiO_(2)to ac-tivate the inert N_(2)molecules.The synthesized semiconductor catalyst Mo-doped TiO_(2)shows a NH_(3)production effciency as high as 134μmol·g^(-1)·h^(-1)under ambient conditions,which is comparable to that achieved by the conventional plasmonic gold metal.By means of ultra-fast spectroscopy we reveal that the plasmonic hot electrons in the system are responsible for the activation of N_(2)molecules,enabling improvement the catalytic activity of TiO_(2).This work opens a new avenue toward semiconductor plasmon-based photocatalytic N_(2)xation.
基金supported by the Ministry of Science and Technology of China (No.2016YFA0200602)the National Natural Science Foundation of China (No.21573211 and No.21633007)the Fundamental Research Funds for the Central Universities of China (No.WK2340000063)
文摘We report an ultrafast spectroscopy investigation that addresses the subtle location effect in a prototypical semiconductor-MOF hybrid system with TiO2 nanoparticles being incorporated inside or supported onto Cu3(BTC)2,denoted as TiO2@Cu3(BTC)2 and TiO2/Cu3(BTC)2,respectively.By tracking in real time the interface electron dynamics in the hybrid system,we find that the interface states formed between TiO2 and Cu3(BTC)2 can act as an effective relay for electron transfer,whose effciency rests on the relative location of the two components.It is such a subtle location effect that brings on difference in photocatalytic CO2 reduction using the two semiconductor-MOF hybrids.The mechanistic understanding of the involved interface electron-transfer behavior and effect opens a helpful perspective for rational design of MOF-based hybrid systems for photoelectrochemical applications.