期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Effect of ultramicropores and inner space of carbon materials on the capacitive sodium storage performance
1
作者 Zimu Jiang Su Zhang +8 位作者 Jing Feng Yuting Jiang Shichuan Liang Qiqi Li Mengjiao Shi Meng Cao Mingyi Zhang Tong Wei Zhuangjun Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期35-40,I0002,共7页
1.Introduction Carbon materials have been widely investigated as the anode materials for Na+storage due to their moderate capacity,good stability,and low cost.The Na+storage mechanisms of carbon are generally classifi... 1.Introduction Carbon materials have been widely investigated as the anode materials for Na+storage due to their moderate capacity,good stability,and low cost.The Na+storage mechanisms of carbon are generally classified into diffusion-controlled interlayer insertion/desertion and capacitive-controlled surface adsorption/desorption[1]. 展开更多
关键词 Graphene block ultramicropores Na^(+)storage Electrochemical kinetic
下载PDF
Size Determination of Ultramicropores and Small Mesopores Using a Calculation Procedure Based on the Tangents of Comparison Plot
2
作者 邱芹 刘世权 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期391-394,共4页
Pore size distribution(PSD) curves of synthesized hollow silica spheres with ultrmicropores and small mesopores were obtained from calculations based on the BJH,KJS,SF,MP,NLDFT models and Prof.Zhu's method.Comparis... Pore size distribution(PSD) curves of synthesized hollow silica spheres with ultrmicropores and small mesopores were obtained from calculations based on the BJH,KJS,SF,MP,NLDFT models and Prof.Zhu's method.Comparisons indicate that Zhu's method not only gives reasonable small mesopore size but also could be further extended to the ultramicropores region for the PSD evaluation. 展开更多
关键词 pore size distribution comparison plot ultramicropores MESOPORES
原文传递
A novel one-step reaction sodium-sulfur battery with high areal sulfur loading on hierarchical porous carbon fiber 被引量:5
3
作者 Qiubo Guo Shuo Sun +4 位作者 Keun-il Kim Hongshen Zhang Xuejun Liu Chenglin Yan Hui Xia 《Carbon Energy》 CAS 2021年第3期440-448,共9页
Room temperature sodium-sulfur(RT Na-S)batteries are gaining extensive attention as attractive alternatives for large-scale energy storage,due to low cost and high abundancy of sodium and sulfur in nature.However,the ... Room temperature sodium-sulfur(RT Na-S)batteries are gaining extensive attention as attractive alternatives for large-scale energy storage,due to low cost and high abundancy of sodium and sulfur in nature.However,the dilemmas regarding soluble polysulfides(Na_(2)Sn,4<n<8)and the inferior reaction kinetics limit their practical application.To address these issues,we report the activated porous carbon fibers(APCF)with small sulfur molecules(S2-4)confined in ultramicropores,to achieve a reversible single-step reaction in RT Na-S batteries.The mechanism is investigated by the in situ UV/vis spectroscopy,which demonstrates Na2S is the only product during the whole discharge process.Moreover,the hierarchical carbon structure can enhance areal sulfur loading without sacrificing the capacity due to thorough contact between electrolyte and sulfur electrode.As a consequence,the APCF electrode with 38 wt%sulfur(APCF-38S)delivers a high initial reversible specific capacity of 1412 mAh g^(-1) and 10.6mAh cm^(-2)(avg.areal sulfur loading:7.5 mg cm^(-2))at 0.1 C(1C=1675 mA g^(-1)),revealing high degree of sulfur utilization.This study provides a new strategy for the development of high areal capacity RT Na-S batteries. 展开更多
关键词 hierarchical porous carbon fiber high areal capacity room temperature sodium-sulfur batteries ultramicropores
下载PDF
Perspective on ultramicroporous carbon as sulphur host for Li-S batteries 被引量:3
4
作者 Helen Maria Joseph Maximilian Fichtner Anji Reddy Munnangi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期242-256,I0006,共16页
Lithium-sulphur(Li-S)batteries are currently considered as next-generation battery technology.Sulphur is an attractive positive electrode for lithium metal batteries,mainly due to its high capacity(1675 m Ah g^(-1))an... Lithium-sulphur(Li-S)batteries are currently considered as next-generation battery technology.Sulphur is an attractive positive electrode for lithium metal batteries,mainly due to its high capacity(1675 m Ah g^(-1))and high specific energy(2600 Wh kg^(-1)).The electrochemical reaction of lithium with sulphur in non-aqueous electrolytes results in the formation of electrolyte soluble intermediate lithium-polysulphides.The dissolved polysulphides shuttle to the anode and get reduced at the anode resulting in Li metal corrosion.The solubility of polysulphide gradually reduces the amount of sulphur in the cathode,thereby limiting the cycle life of Li-S batteries.Several strategies have been proposed to improve the cycling stability of Li-S batteries.A unique approach to eliminate the polysulphide shuttle is to use ultramicroporous carbon(UMC)as a host for sulphur.The pore size of UMC which is below 7A,is the bottleneck for carbonate solvents to access sulphur/polysulphides confined in the pores,thereby preventing the polysulphide dissolution.This perspective article will emphasise the role of UMC host in directing the lithiation mechanism of sulphur and in inhibiting polysulphide dissolution,including the resulting parasitic reaction on the lithium anode.Further,the challenges that need to be addressed by UMC-S based Li-S batteries,and the strategies to realise high power density,high Coulombic efficiency,and resilient Li-S batteries will be discussed. 展开更多
关键词 Lithium-sulphur batteries Ultramicroporous carbon SULPHUR CATHODE Composites
下载PDF
Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal-Organic Framework with Guest-Adaptive Pore Channels 被引量:2
5
作者 Zhaoqiang Zhang Xili Cui +7 位作者 Xiaoming Jiang Qi Ding Jiyu Cui Yuanbin Zhang Youssef Belmabkhout Karim Adil Mohamed Eddaoudi Huabin Xing 《Engineering》 SCIE EI 2022年第4期80-86,共7页
Trans-/cis-olefin isomers play a vital role in the petrochemical industry.The paucity of energy-efficient technologies for their splitting is mainly due to the similarities of their physicochemical properties.Herein,t... Trans-/cis-olefin isomers play a vital role in the petrochemical industry.The paucity of energy-efficient technologies for their splitting is mainly due to the similarities of their physicochemical properties.Herein,two new tailor-made anion-pillared ultramicroporous metal–organic frameworks(MOFs),ZU-36-Ni and ZU-36-Fe(GeFSIX-3-Ni and GeFSIX-3-Fe)are reported for the first time for the efficient trans-/cis-2-butene(trans-/cis-C_(4)H_(8))mixture splitting by enhanced molecular exclusion.Notably,ZU-36-Ni unexpectedly exhibited smart guest-adaptive pore channels for trapping trans-C_(4)H_(8)with a remarkable adsorption capacity(2.45 mmol∙g^(−1))while effectively rejecting cis-C_(4)H_(8)with a high purity of 99.99%.The dispersion-corrected density functional theory(DFT-D)calculation suggested that the guest-adaptive behavior of ZU-36-Ni in response to trans-C_(4)H_(8)is derived from the organic linker rotation and the optimal pore dimensions,which not only improve the favorable adsorption/diffusion of trans-C_(4)H_(8)with optimal host–guest interactions,but also enhance the size-exclusion of cis-C_(4)H_(8).This work opens a new avenue for pore engineering in advanced smart or adaptive porous materials for specific applications involving guest molecular recognition. 展开更多
关键词 Adsorption and separation Trans-/cis-butene Ultramicroporous metal-organic frameworks Pore engineering Guest-adaptive
下载PDF
A thiophene-containing covalent triazine-based framework with ultramicropore for CO2 capture 被引量:1
6
作者 Keke Wang Yuanzhe Tang +4 位作者 Qin Jiang Youshi Lan Hongliang Huang Dahuan Liu Chongli Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期902-908,共7页
In this work, a 2D covalent triazine-based framework was prepared by using 1,3-dicyanobenzo[c]thiophene(DCBT) as monomer to effectively capture CO. The resulting CTF-DCBT was characterized by FT-IR, XPS, PXRD, eleme... In this work, a 2D covalent triazine-based framework was prepared by using 1,3-dicyanobenzo[c]thiophene(DCBT) as monomer to effectively capture CO. The resulting CTF-DCBT was characterized by FT-IR, XPS, PXRD, elemental analysis, SEM, TEM, and Nadsorption-desorption.The results indicate that CTF-DCBT is partially crystalline and has ultramicropore(6.5 A?) as well as high heteroatom contents(11.24 wt% and 12.61 wt% for N and S, respectively). In addition, the BET surface area and total pore volume of CTF-DCBT are 500 m/g and 0.26 cm/g, respectively. CTF-DCBT possesses excellent thermal stability(450 °C) and chemical stability towards boiling water, 4 M HCl, and 1 M Na OH.The COadsorption capacity of CTF-DCBT is 37.8 cm/g at 1 bar and 25 °C. After six adsorption-desorption cycles, there is no obvious loss of COuptake observed. Due to the ultramicropore and high heteroatom contents, CTF-DCBT has high isosteric heats of adsorption for COand high selectivities of COover Nand CH. At 25 °C, the CO/Nand CO/CHselectivities are 112.5 and 10.3, respectively, which are higher than those of most POFs. Breakthrough curves indicate that CTF-DCBT could effectively separate CO/Nand CO/CHmixtures. 展开更多
关键词 Covalent triazine-based framework Ultramicropore Adsorption Carbon dioxide
下载PDF
Facile preparation of coal-based ultramicroporous carbon microspheres for selective CO_(2)capture
7
作者 Mei An Tuo Guo Qingjie Guo 《Carbon Resources Conversion》 EI 2024年第3期97-105,共9页
The basic structure of aromatic compounds that are abundant in coal is the carbonaceous precursor derived from carbon microspheres.However,it remains to be a huge challenge to prepare carbon microspheres using coal du... The basic structure of aromatic compounds that are abundant in coal is the carbonaceous precursor derived from carbon microspheres.However,it remains to be a huge challenge to prepare carbon microspheres using coal due to the complex construction and composition of coal.Herein,a simple and viable way to obtain coal-based microporous carbon microspheres was developed by means of ethanol pyrolysis and a sequential extraction strategy.The as-prepared carbon microsphere featured aspherical micron particles of a uniform size(0.6-1.6㎛),abundant O-functional groups,excellent thermal stability,high SBET(415.5-983.2 m^(2)/g),and plentiful ultra-micropores(63.15-72.72%).The coal-based carbon microsphere exhibited a noteworthy CO_(2)uptake(3.19-4.97 mmol/g at 273 K and 1.0 bar),acceptable CO_(2)/N_(2)selectivity(IAST:23-46)and moderate isosteric heats(20-32 kJ/mol).This synthetic strategy is important for the preparation of ultramicroporous carbon microspheres using coal,and the synthetic carbon microspheres have promising prospects for highly efficient CO_(2)capture. 展开更多
关键词 COAL Ultramicroporous Carbon microspheres ETHANOLYSIS Sequential extraction CO_(2)capture
原文传递
High and selective capture of low-concentration CO2 with an anion-functionalized ultramicroporous metal-organic framework 被引量:5
8
作者 Zhaoqiang Zhang Qi Ding +2 位作者 Jiyu Cui Xili Cui Huabin Xing 《Science China Materials》 SCIE EI CSCD 2021年第3期691-697,共7页
CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.He... CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.Herein,we for the first time report a novel anion-functionalized ZU-16-Co(TIFSIX-3-Co,TIFSIX=hexafluorotitanate(TiF62−),3=pyrazine),which exhibits one-dimensional pore channels decorated by abundant F atoms,for efficient CO2 capture at a concentration around 400–10,000 ppm.Among its isostructural MFSIX-3(M=Si,Ti,Ge)family materials,ZU-16-Co with fine-tuned pore size of 3.62Åexhibits the highest CO2 uptake at 0.01 bar(10,000 ppm)and 1 bar(2.63 and 2.87 mmol g−,respectively).The high CO2 capture ability of ZU-16-Co originates from the fine-tuned pore dimensions with strong F⋯C=O host-guest interactions and relatively large pore volumes coming from its longer coordinated Ti-F-Co distance(3.9Å)in c direction.The excellent carbon trapping performance was further verified by dynamic breakthrough tests for CO2/N2(1/99 and 15/85)and CO2/CH4(50/50)mixtures.The adsorption and separation performances,resulting from the fine-tuned pore system with periodic arrays of exposed functionalities,demonstrate that ultramicroporous ZU-16-Co can be a promising adsorbent for low-concentration carbon capture. 展开更多
关键词 carbon capture ultramicroporous metal-organic frameworks gas adsorption CO2/N2 separation natural gas purification
原文传递
Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors 被引量:3
9
作者 Yangyi Gu Ling Miao +3 位作者 Ying Yin Mingxian Liu Lihua Gan Liangchun Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第4期1491-1496,共6页
A new nonporous Zn-based metal-organic framework(NPMOF) synthesized from a high nitrogencontaining rigid ligand was converted into porous carbon materials by direct carbonization without adding additional carbon sourc... A new nonporous Zn-based metal-organic framework(NPMOF) synthesized from a high nitrogencontaining rigid ligand was converted into porous carbon materials by direct carbonization without adding additional carbon sources.A series of NPMOF-derived porous carbons with very high N/O contents(24.1% for NPMOF-700,20.2% for NPMOF-800,15.1% for NPMOF-900) were prepared by adjusting the pyrolysis temperatures.The NPMOF-800 fabrica ted electrode exhibits a high capacitance of220 F/g and extremely large surface area normalized capacitance of 57.7 μF/cm~2 compared to other reported MOF-derived porous carbon electrodes,which could be attributed to the abundant ultramicroporosity and high N/O co-doping.More importantly,symmetric supercapacitor assembled with the MOF-derived carbon manifests prominent stability,i.e.,99.1 % capacitance retention after 10,000 cycles at 1.0 A/g.This simple preparation of MOF-derived porous carbon materials not only finds an application direction for a variety of porous or even nonporous MOFs,but also opens a way for the production of porous carbon materials for superior energy storage. 展开更多
关键词 N/O co-doped Ultramicroporous Metal-organic frameworks Porous carbons SUPERCAPACITORS
原文传递
Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes 被引量:3
10
作者 Wen-Jing Lu Shi-Ze Huang +6 位作者 Ling Miao Ming-Xian Liu Da-Zhang Zhu Liang-Chun Li Hui Duan Zi-Jie Xu Li-Hua Gan 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第6期1324-1329,共6页
We demonstrate a simple and highly efficient strategy to synthesize MnO2/nitrogen-doped ultramicroporous carbon nanospheres(MnO2/N-UCNs) for supercapacitor application.MnO2/N-UCNs were fabricated via a template-free... We demonstrate a simple and highly efficient strategy to synthesize MnO2/nitrogen-doped ultramicroporous carbon nanospheres(MnO2/N-UCNs) for supercapacitor application.MnO2/N-UCNs were fabricated via a template-free polymerization of resorcinol/formaldehyde on the surface of phloroglucinol/terephthalaldehyde colloids in the presence of hexamethylenetetramine,followed by carbonization and then a redox reaction between carbons and KMnO4.As-prepared MnO2/N-UCNs exhibits regular ultramicropores,high surface area,nitrogen heteroatom,and high content of MnO2.A typical MnO2/N-UCNs with 57 wt.%MnO2 doping content(denoted as MnO2(57%)/N-UCNs) makes the most use of the synergistic effect between carbons and metal oxides.MnO2(57%)/N-UCNs as a supercapacitor electrode exhibits excellent electrochemical performance such as a high specific capacitance(401 F/g at 1.0 A/g) and excellent charge/discharge stability(86.3%of the initial capacitance after 10,000 cycles at 2.0 A/g) in 1.0 mol/L Na2SO4 electrolyte.The well-designed and high-performance MnO2/N-UCNs highlight the great potential for advanced supercapacitor applications. 展开更多
关键词 Ultramicroporous carbon nanosphere Nitrogen-doping MnO2 Electrode Supercapacitor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部