期刊文献+
共找到11,467篇文章
< 1 2 250 >
每页显示 20 50 100
Microwave-assisted exploration of the electron configuration-dependent electrocatalytic urea oxidation activity of 2D porous NiCo_(2)O_(4)spinel
1
作者 Jun Wan Zhiao Wu +11 位作者 Guangyu Fang Jinglin Xian Jiao Dai Jiayue Guo Qingxiang Li Yongfei You Kaisi Liu Huimin Yu Weilin Xu Huiyu Jiang Minggui Xia Huanyu Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期226-235,共10页
Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine... Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR. 展开更多
关键词 2D materials SPINEL Microwave ELECTROCATALYSIS urea oxidation reaction
下载PDF
Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation
2
作者 Guangfu Qian Wei Chen +5 位作者 Jinli Chen Li Yong Gan Tianqi Yu Miaojing Pan Xiaoyan Zhuo Shibin Yin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期684-694,共11页
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr... Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation. 展开更多
关键词 Carbon-encapsulated Tensile strain Catalyst Oxygen evolution reaction urea oxidation reaction
下载PDF
Urea breath test for Helicobacter pylori infection in adult dyspeptic patients: A meta-analysis of diagnostic test accuracy
3
作者 Fabian Fellipe Bueno Lemos Caroline Tianeze de Castro +9 位作者 Marcel Silva Luz Gabriel Reis Rocha Gabriel Lima Correa Santos Luís Guilherme de Oliveira Silva Mariana Santos Calmon Cláudio Lima Souza Ana Carla Zarpelon-Schutz Kádima Nayara Teixeira Dulciene Maria de Magalhães Queiroz Fabrício Freire de Melo 《World Journal of Gastroenterology》 SCIE CAS 2024年第6期579-598,共20页
BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for... BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for detecting H.pylori.Despite numerous studies confirming its substantial accuracy,the reliability of UBT results is often compromised by inherent limitations.These findings underscore the need for a rigorous statistical synthesis to clarify and reconcile the diagnostic accuracy of the UBT for the diagnosis of H.pylori infection.AIM To determine and compare the diagnostic accuracy of 13C-UBT and 14C-UBT for H.pylori infection in adult patients with dyspepsia.METHODS We conducted an independent search of the PubMed/MEDLINE,EMBASE,and Cochrane Central databases until April 2022.Our search included diagnostic accuracy studies that evaluated at least one of the index tests(^(13)C-UBT or ^(14)C-UBT)against a reference standard.We used the QUADAS-2 tool to assess the methodo-logical quality of the studies.We utilized the bivariate random-effects model to calculate sensitivity,specificity,positive and negative test likelihood ratios(LR+and LR-),as well as the diagnostic odds ratio(DOR),and their 95%confidence intervals.We conducted subgroup analyses based on urea dosing,time after urea administration,and assessment technique.To investigate a possible threshold effect,we conducted Spearman correlation analysis,and we generated summary receiver operating characteristic(SROC)curves to assess heterogeneity.Finally,we visually inspected a funnel plot and used Egger’s test to evaluate publication bias.endorsing both as reliable diagnostic tools in clinical practice.CONCLUSION In summary,our study has demonstrated that ^(13)C-UBT has been found to outperform the ^(14)C-UBT,making it the preferred diagnostic approach.Additionally,our results emphasize the significance of carefully considering urea dosage,assessment timing,and measurement techniques for both tests to enhance diagnostic precision.Nevertheless,it is crucial for researchers and clinicians to evaluate the strengths and limitations of our findings before implementing them in practice. 展开更多
关键词 Helicobacter pylori urea breath test DIAGNOSIS Diagnostic test accuracy META-ANALYSIS
下载PDF
Atomically dispersed Ni electrocatalyst for superior urea-assisted water splitting
4
作者 Fang Luo Shuyuan Pan +3 位作者 Yuhua Xie Chen Li Yingjie Yu Zehui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期1-6,I0002,共7页
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio... Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting. 展开更多
关键词 urea oxidation reaction Hydrogen evolution reaction Nickel single atoms Water splitting
下载PDF
Engineering hierarchical quaternary superstructure of an integrated MOF-derived electrode for boosting urea electrooxidation assisted water electrolysis
5
作者 Jianjun Tian Changsheng Cao +3 位作者 Yingchun He Muhammad Imran Khan Xin-Tao Wu Qi-Long Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期695-701,共7页
Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierar... Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierarchical quaternary superstructure was fabricated through a self-sacrificing template strategy from the metal–organic framework(Co-ZIF-67)nanoplate arrays,which features an intriguing well-defined hierarchy when taking the unit cells of the NiCo-based layered double hydroxide(NiCo-LDH)as the primary structure,the ultrathin LDH nanoneedles as the secondary structure,the mesoscale hollow plates of the LDH nanoneedle arrays as the tertiary structure,and the macroscale three-dimensional frames of the plate arrays as the quaternary structure.Notably,the distinctive structure of NiCo-ZLDH/NF can not only accelerate both mass and charge transfer,but also expose plentiful accessible active sites with high intrinsic activity,endowing it with an excellent electrochemical performance for urea oxidation reaction(UOR).Specially,it only required the low potentials of 1.335,1.368 and 1.388 V to deliver the current densities of 10,100 and 200 mA cm^(-2),respectively,much superior to those for typical NiCo-LDH.Employing NiCo-ZLDH/NF as the bifunctional electrode for both anodic UOR and cathodic HER,an energy-saving electrolysis system was further explored which can greatly reduce the needed voltage of 213 mV to deliver the current density of 100 mA cm^(-2),as compared to the conventional water electrolysis system composed of OER.This work manifests that it is prospective to explore the hierarchically nanostructured electrodes and the innovative electrolytic technologies for high-efficiency electrocatalysis. 展开更多
关键词 Hierarchical superstructures Metal–organic frameworks Layered double hydroxides urea oxidation reaction Hydrogen evolution reaction
下载PDF
Response of the Maize Variety EV87-28 to a Fertilization Strategy Involving Indorama Granular Urea on Ferralsol in the Central Ivory Coast
6
作者 Fernand Guy Yao Kouadio Amani +6 位作者 Brou Kouame Jean Lopez Essehi Brahima Kone Kouadio Houphouet Cheikh Ahmed Diawara Bala Mamadou Ouattara Albert Yao-Kouame 《Agricultural Sciences》 2024年第1期187-208,共22页
In Côte d’Ivoire, the decline in soil fertility strongly impacts the productivity of maize (Zea mays L.) on heavily leached ferralitic soil. In this study, the general objective was therefore to improve the prod... In Côte d’Ivoire, the decline in soil fertility strongly impacts the productivity of maize (Zea mays L.) on heavily leached ferralitic soil. In this study, the general objective was therefore to improve the productivity of maize EV87-28 on the Ferralsols in pre-forested areas during different cropping seasons. Eight (8) micro-plots were set up according to a total randomization device with three repetitions. Two factors were studied: nitrogen fertilizer modalities (main factor) and crop season (secondary factor). Growth, flowering and yield parameters were measured and analyzed. The results showed that there was no interaction between the nitrogen fertilizer factor and the cropping season factor. In addition, this study showed the short rainy season had the most positive impact on growth, flowering and yield parameters than the long rainy season. The results also showed that the different nitrogen fertilizer modalities had no statistically different effects on growth, flowering and yield parameters. However, quantitative differences were reported, highlighting one nitrogen fertilizer modality, which is the combination of urea granule + farm manure (75% urea indorama granules and 25% farm manure). The combination of urea granule + farm manure (75% urea indorama granules and 25% farm manure) had the best effect on corn grain yield. So, the combination of urea (75%) and manure (25%), that resulted in yield gain, could be recommended for corn fertilization during the small rainy season. 展开更多
关键词 Indorama Granular urea FERRALSOL Cultural Seasons MAIZE Ivory Coast
下载PDF
Humic Acid Effects on Reducing Corn Leaf Burn Caused by Foliar Spray of Urea-Ammonium Nitrate at Different Humic Acid/Urea-Ammonium Nitrate Ratios
7
作者 Xinhua Yin 《Open Journal of Soil Science》 2024年第3期180-189,共10页
Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on c... Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season. 展开更多
关键词 Humic Acid urea-Ammonium Nitrate CORN Leaf Burn N rate Ratio
下载PDF
Studies on Stability and Moisture Retention of Urea and Its Derivatives
8
作者 Lv Yingfeng Lv Wanqi Zhou Jingmin 《China Detergent & Cosmetics》 CAS 2023年第3期21-26,共6页
The effect of triethyl citrate(TEC)on the stability of cream preparations containing urea or hydroxyethyl urea along with their moisturizing effect on skin was investigated.The results showed that creams incorporating... The effect of triethyl citrate(TEC)on the stability of cream preparations containing urea or hydroxyethyl urea along with their moisturizing effect on skin was investigated.The results showed that creams incorporating urea or hydroxyethyl urea led to increase in pH value after a long-term and high-temperature storage.pH change in the latter one was relatively smaller.With the addition of TEC,the elevated pH of the formula system was suppressed.In the situation of stable formula,the higher the TEC added,the more significant inhibition effect on the pH change was observed.In the moisture retention test in vivo,compared to 27.19%moisture rate in negative control,cream preparations containing 5%urea or 5%hydroxyethyl urea had remarkable moisturizing effect,which were all higher than 52%.The latter one was relatively more prominent.There is no significant effect on moisturizing effect for product with TEC additive. 展开更多
关键词 urea hydroxyethyl urea triethyl citrate moisturizing properties pH value
下载PDF
AlCl_(3)/urea类离子液体电沉积铝
9
作者 王姝羡 徐存英 +2 位作者 陈晓 向琴琴 李艳 《工程科学与技术》 EI CSCD 北大核心 2023年第3期217-224,共8页
类离子液体是一种新型溶剂,不仅具有离子液体独特的物理化学性能,还具有合成简单、价格低廉等优点,在电沉积铝技术方面具有广阔的应用前景。但目前相关的作用机制还未明确,从而影响类离子液体电解生产铝和电解精炼铝新工艺的开发应用。... 类离子液体是一种新型溶剂,不仅具有离子液体独特的物理化学性能,还具有合成简单、价格低廉等优点,在电沉积铝技术方面具有广阔的应用前景。但目前相关的作用机制还未明确,从而影响类离子液体电解生产铝和电解精炼铝新工艺的开发应用。因此,本文以三氯化铝/尿素(AlCl_(3)/urea)类离子液体为电解质,利用电导率仪、黏度计、线性扫描伏安法、场发射电子扫描显微镜(FE–SEM)和X射线衍射仪(XRD)等测试手段研究了AlCl_(3)/urea类离子液体的物理化学性质、铝在电解质中的电化学行为及铝沉积产物的形貌和物相结构;系统分析AlCl_(3)/urea摩尔比和温度对体系电导率和黏度的影响,研究温度对铝离子析出电位、铝离子还原反应过程动力学、沉积铝形貌和结构的影响规律。结果表明:相同条件下,摩尔比为1.3∶1.0的AlCl_(3)/urea电解质电导率最大,黏度最小,物理化学性质较为优良,且其电导活化能为19.82 kJ·mol(–1)。升温促进了电荷迁移反应,使得金属铝的析出电位正移,交换电流密度增大,说明较高的温度有利于加快Al(Ⅲ)离子在铜基体上的还原;温度的变化对铝沉积产物的表观形貌影响不大,均由不规则的微米块体组成,但对粒径和致密性有一定影响;晶粒的生长方式也受到了温度的影响,但都具有(111)晶面优先取向。 展开更多
关键词 AlCl_(3)/urea 电导率 黏度 电化学 电沉积 类离子液体
下载PDF
Balancing sub‐reaction activity to boost electrocatalytic urea synthesis using a metal‐free electrocatalyst 被引量:2
10
作者 Chen Chen Shuang Li +12 位作者 Xiaorong Zhu Shuowen Bo Kai Cheng Nihan He Mengyi Qiu Chao Xie Dezhong Song Youzhen Liu Wei Chen Yafei Li Qinghua Liu Conggang Li Shuangyin Wang 《Carbon Energy》 SCIE EI CAS CSCD 2023年第10期40-49,共10页
Electrocatalytic urea synthesis via coupling of nitrate with CO_(2)is considered as a promising alternative to the industrial urea synthetic process.However,the requirement of sub-reaction(NO_(3)RR and CO_(2)RR)activi... Electrocatalytic urea synthesis via coupling of nitrate with CO_(2)is considered as a promising alternative to the industrial urea synthetic process.However,the requirement of sub-reaction(NO_(3)RR and CO_(2)RR)activities for efficient urea synthesis is not clear and the related reaction mechanisms remain obscure.Here,the construction,breaking,and rebuilding of the sub-reaction activity balance would be accompanied by the corresponding regulation in urea synthesis,and the balance of sub-reaction activities was proven to play a vital role in efficient urea synthesis.With rational design,a urea yield rate of 610.6 mg h−1 gcat.−1 was realized on the N-doped carbon electrocatalyst,superior to that of noble-metal electrocatalysts.Based on the operando SRFTIR measurements,we proposed that urea synthesis arises from the coupling of^(*)NO and^(*)CO to generate the key intermediate of^(*)OCNO.This work provides new insights and guidelines into urea synthesis from the aspect of activity balance. 展开更多
关键词 activity balance C-N coupling ELECTROCATALYSIS metal‐free urea synthesis
下载PDF
Engineering Spin States of Isolated Copper Species in a Metal-Organic Framework Improves Urea Electrosynthesis 被引量:1
11
作者 Yuhang Gao Jingnan Wang +4 位作者 Yijun Yang Jian Wang Chuang Zhang Xi Wang Jiannian Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期536-549,共14页
The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for elec... The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal–organic frameworks: Cu^(Ⅲ)-HHTP and Cu^(Ⅱ)-HHTP. Cu^(Ⅲ)-HHTP exhibits an improved urea production rate of 7.78 mmol h^(−1)g^(−1) and an enhanced Faradaic efficiency of 23.09% at-0.6 V vs. reversible hydrogen electrode, in sharp contrast to Cu^(Ⅱ)-HHTP.Isolated CuⅢspecies with S = 0 spin ground state are demonstrated as the active center in Cu^(Ⅲ)-HHTP, different from Cu^(Ⅱ) with S = 1/2 in Cu^(Ⅱ)-HHTP. We further demonstrate that isolated Cu^(Ⅲ)with an empty dx2-y20orbital in Cu^(Ⅲ)-HHTP experiences a single-electron migration path with a lower energy barrier in the C–N coupling process, while Cu^(Ⅱ)with a single-spin state( d_(x2-y2)^(1)) in Cu^(Ⅱ)-HHTP undergoes a two-electron migration pathway. 展开更多
关键词 ELECTROCATALYSIS urea synthesis Metal-organic framework Spin catalysis C-N coupling
下载PDF
Hierarchically wood-derived integrated electrode with tunable superhydrophilic/superaerophobic surface for efficient urea electrolysis 被引量:1
12
作者 Yu Liao Songlin Deng +3 位作者 Yan Qing Han Xu Cuihua Tian Yiqiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期566-575,I0014,共11页
Conferring surfaces with superhydrophilic/superaerophobic characteristics is desirable for synthesizing efficient gas reaction catalysts.However,complicated procedures,high costs,and poor interfaces hinder commerciali... Conferring surfaces with superhydrophilic/superaerophobic characteristics is desirable for synthesizing efficient gas reaction catalysts.However,complicated procedures,high costs,and poor interfaces hinder commercialization.Here,an integrated electrode with tunable wettability derived from a hierarchically porous wood scaffold was well designed for urea oxidation reaction(UOR).Interestingly,the outer surface of the wood lumen was optimized to the preferred wettability via stoichiometry to promote electrolyte permeation and gas escape.This catalyst exhibits outstanding activity and durability for UOR in alkaline media,requiring only a potential of 1.36 V(vs.RHE)to deliver 10 m A cm^(-2)and maintain its activity without significant decay for 60 h.These experiments and theoretical calculations demonstrate that the nickel(oxy)hydroxide layer formed through surface reconstruction of nickel nanoparticles improves the active sites and intrinsic activity.Moreover,the superwetting properties of the electrode promote mass transfer by guaranteeing substantial contact with the electrolyte and accelerating the separation of gaseous products during electrocatalysis.These findings provide the understanding needed to manipulate the surface wettability through rational design and fabrication of efficient electrocatalysts for gas-evolving processes. 展开更多
关键词 Integrated electrode Wood scaffold Superhydrophilic/Superaerophobic surface urea oxidation reaction
下载PDF
Combining controlled-release urea and normal urea with appropriate nitrogen application rate to reduce wheat stem lodging risk and increase grain yield and yield stability
13
作者 ZHANG Guang-xin ZHAO De-hao +3 位作者 FAN Heng-zhi LIU Shi-ju LIAO Yun-cheng HAN Juan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第10期3006-3021,共16页
A mixture of controlled-release urea and normal urea(CRUNU)is an efficient nitrogen(N)fertilizer type,but little is known about its effects on stem lodging resistance,grain yield,and yield stability of wheat.In this s... A mixture of controlled-release urea and normal urea(CRUNU)is an efficient nitrogen(N)fertilizer type,but little is known about its effects on stem lodging resistance,grain yield,and yield stability of wheat.In this study,a 4-year field experiment(from 2017 to 2021)was conducted to analyze the effects of N fertilizer types(CRUNU and normal urea(NU))and application rates(low level(L),135 kg ha^(–1);medium level(M),180 kg ha^(–1);high level(H),225 kg ha^(–1))on population lodging resistance,basal internode strength,lignin content and synthetase activity,stem lodging resistance,grain yield,and yield stability of wheat.Our results showed that the two N fertilizer types had the highest lodging rate under high N application rates,and the M-CRUNU treatment showed the lowest lodging rate.Compared with NU,CRUNU improved the wheat population lodging resistance under the three N application rates,mainly related to improving wheat population characteristics and breaking the strength of the second basal internode.Correlation analysis showed that the breaking strength of the second basal internode was related to the physical characteristics,chemical components,and micro-structure of the internode.Compared with NU,CRUNU significantly increased wheat grain yield by 4.47,14.62,and 3.12%under low,medium,and high N application rates,respectively.In addition,CRUNU showed no significant difference in grain yield under medium and high N application rates,but it presented the highest yield stability under the medium N application rate.In summary,CRUNU,combined with the medium N application rate,is an efficient agronomic management strategy for wheat production. 展开更多
关键词 controlled-release urea LODGING grain yield yield stability wheat
下载PDF
Reduction of N2O emissions by DMPP depends on the interactions of nitrogen sources(digestate vs. urea) with soil properties
14
作者 LI Hao-ruo SONG Xiao-tong +1 位作者 Lars RBAKKEN JU Xiao-tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期251-264,共14页
The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole p... The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole phosphate(DMPP)apparently inhibits ammonia oxidizing bacteria(AOB)more than ammonia oxidizing archaea(AOA),which dominate the nitrification in alkaline and acid soil,respectively.However,the efficacy of DMPP in terms of nitrogen sources interacting with soil properties remains unclear.We therefore conducted a microcosm experiment using three typical Chinese agricultural soils with contrasting pH values(fluvo-aquic soil,black soil and red soil),which were fertilized with either digestate or urea in conjunction with a range of DMPP concentrations.In the alkaline fluvo-aquic soil,fertilization with either urea or digestate induced a peak in N_(2)O emission(60μg N kg^(-1)d^(-1))coinciding with the rapid nitrification within 3 d following fertilization.DMPP almost eliminated this peak in N_(2)O emission,reducing it by nearly 90%,despite the fact that the nitrification rate was only reduced by 50%.In the acid black soil,only the digestate induced an N_(2)O emission that increased gradually,reaching its maximum(20μg N kg^(-1)d^(-1))after 5–7 d.The nitrification rate and N_(2)O emission were both marginally reduced by DMPP in the black soil,and the N_(2)O yield(N_(2)O-N per NO2–+NO3–-N produced)was exceptionally high at 3.5%,suggesting that the digestate induced heterotrophic denitrification.In the acid red soil,the N_(2)O emission spiked in the digestate and urea treatments at 50 and 10μg N kg^(-1)d^(-1),respectively,and DMPP reduced the rates substantially by nearly 70%.Compared with 0.5%DMPP,the higher concentrations of DMPP(1.0 to 1.5%)did not exert a significantly(P<0.05)better inhibition effect on the N_(2)O emissions in these soils(either with digestate or urea).This study highlights the importance of matching the nitrogen sources,soil properties and NIs to achieve a high efficiency of N_(2)O emission reduction. 展开更多
关键词 nitrous oxide DIGESTATE urea nitrification inhibitors DMPP alkaline soils acid soils
下载PDF
Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K
15
作者 Xingjuan Liang Dehua Xu +5 位作者 Zhengjuan Yan Jingxu Yang Xinlong Wang Zhiye Zhang Jingli Wu Honggang Zhen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期131-142,共12页
Based on the dynamic method,a quaternary system of ammonium polyphosphate (APP)-urea ammonium nitrate (UAN,CO(NH_(2))_(2)-NH_(4)NO_(3))-potassium chloride (KCl)-H_(2)O and its subsystems (APP-[CO(NH_(2))_(2)-NH_(4)NO_... Based on the dynamic method,a quaternary system of ammonium polyphosphate (APP)-urea ammonium nitrate (UAN,CO(NH_(2))_(2)-NH_(4)NO_(3))-potassium chloride (KCl)-H_(2)O and its subsystems (APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O,KCl-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O and APP-KCl-H_(2)O) were systematically investigated at the temperature of 273.2 K.Each ternary phase diagram contains one invariant point and three crystallization regions.The crystallization regions are:(1)(NH_(4))_(3)HP_(2)O_(7),(NH_(4))_(4)P_(2)O_(7)and ((NH_(4))_(3)HP_(2)O_(7)+(NH_(4))_(4)P_(2)O_(7)) for APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O diagram;(2) KCl,KNO_(3)and(KCl+KNO_(3)) for KCl-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O diagram and (3)(NH_(4))_(3)HP_(2)O_(7),KCl and((NH_(4))_(3)HP_(2)O_(7)+KCl) for APP-KCl-H_(2)O diagram.The quaternary phase diagram of APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-KCl-H_(2)O has no quaternary invariant point but includes four solid phase crystallization regions,i.e.,(NH_(4))_(3)HP_(2)O_(7),(NH_(4))_(4)P_(2)O_(7),KNO_(3)and KCl,in which the KNO_(3)region occupies the largest area.The maximum total nutrient content (N+P_(2)O_(5)+K_(2)O) existing as ionic forms in the APP-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O,KCl-[CO(NH_(2))_(2)-NH_(4)NO_(3)]-H_(2)O,APP-KCl-H_(2)O and quaternary systems is 44.70%,32.86%,45.56%and 46.23%(mass),respectively,indicating that the maximum nutrient content can be reached using raw materials of the corresponding systems to prepare liquid fertilizer.In the quaternary system,the content of NH_(4)~+-N ascends with the increase of the total nutrient content,while the contents of NO_(3)^(-)-N and CO(NH_(2))_(2)-N increase with elevated total N.This work can help optimize the operating parameters for the production,storage and transportation of liquid fertilizers. 展开更多
关键词 Water-soluble ammonium polyphosphate urea ammonium nitrate(UAN) Phase equilibria SOLUBILITY THERMODYNAMICS
下载PDF
Enrichment of nervonic acid in Acer truncatum Bunge oil by combination of two-stage molecular distillation,one-stage urea complexation and five-stage solvent crystallization
16
作者 Yingxi Gao Jiayi Shi +4 位作者 Jie Wang Fan Zhang Shichao Tian Zhiyong Zhou Zhongqi Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期61-71,共11页
Nervonic acid is the world’s first and only potent substance that can repair damaged nerve fibers and promote nerve cell regeneration with high nutritional value.The wide variety of fatty acids in plant oils and fats... Nervonic acid is the world’s first and only potent substance that can repair damaged nerve fibers and promote nerve cell regeneration with high nutritional value.The wide variety of fatty acids in plant oils and fats with similar structures makes the large-scale separation and purification of high-purity nervonic acid very difficult.A new combined process of molecular distillation,urea inclusion and solvent crystallization was established to prepare high-purity nervonic acid with the mixed fatty acids obtained after saponification and acidification of Acer truncatum Bunge oil as raw materials.First,according to the difference in the mean free path of fatty acids,molecular distillation was used to separate and remove C16 saturated fatty acid of palmitic acid and four C18-C20 fatty acids of stearic,oleic,linoleic,and linolenic acids.The content of C16-C20 fatty acids decreased from 72.92% to 19.22% after two-stage molecular distillation processes,in which the contents of saturated fatty acid of palmitic acid decreased to about 0.5%.Then,according to the difference in carbon chain length and saturation of fatty acid,the contents of C22-C24 saturated fatty acids of tetracosanoic and docosanoic acids decreased to 0.21% and 0.07% by urea inclusion with urea/free fatty acid preparation by saponification(SPOMFs)ratio as 0.6.In addition,all saturated fatty acids were basically separated.Finally,according to the difference in the solubility of fatty acids in solvents,the C18-C20 unsaturated fatty acids of oleic,linoleic,and linolenic acids and C22 unsaturated fatty acid of erucic acid were removed by solvent crystallization.The content of C18-C20 unsaturated fatty acids decreased to less than 5% with pentanol as the solvent after the first stage solvent crystallization.The content of erucic acid decreased to 3.47% with anhydrous ethanol as the solvent after the second to fifth stage solvent crystallization.The combined process of molecular distillation,urea inclusion and low temperature crystallization innovatively adopted an efficient,simple and easy-toindustrial solvent crystallization method to separate erucic and nervonic acids,obtaining nervonic acid with purity of 96.53% and final yield of 47.99%. 展开更多
关键词 Nervonic acid Acer truncatum Bunge Molecular distillation urea complexation Solvent crystallization
下载PDF
MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis
17
作者 Xiaoqiang Du Yangyang Ding Xiaoshuang Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期798-811,共14页
Water electrolysis is a promising technology to produce hydrogen but it was severely restricted by the slow oxygen evolution reaction(OER).Herein,we firstly reported an advanced electrocatalyst of MOF-derived hollow Z... Water electrolysis is a promising technology to produce hydrogen but it was severely restricted by the slow oxygen evolution reaction(OER).Herein,we firstly reported an advanced electrocatalyst of MOF-derived hollow Zn-Co-Ni sulfides(ZnS@Co_(9)S_(8)@Ni_(3)S_(2)-1/2,abbreviated as ZCNS-1/2)nanosword arrays(NSAs)with remarkable hydrogen evolution reaction(HER),OER and corresponding water electrolysis performance.To reach a current density of 10 mA cm^(-2),the cell voltage of assembled ZCNS-1/2//ZCNS-1/2 for urea electrolysis(1.314 V)is 208 mV lower than that for water electrolysis(1.522 V)and stably catalyzed for over 15 h,substantially outperforming the most reported water and urea electrolysis electrocatalysts.Density functional theory calculations and experimental result clearly reveal that the properties of large electrochemical active surface area(ECSA)caused by hollow NSAs and fast charge transfer resulted from the Co_(9)S_(8)@Ni_(3)S_(2) heterostructure endow the ZCNS-1/2 electrode with an enhanced electrocatalytic performance. 展开更多
关键词 Water electrolysis urea electrolysis MOF Multi-metal sulfides Density functional theory
下载PDF
Elucidating the promotion mechanism of the ternary cooperative heterostructure toward industrial-level urea oxidation catalysis
18
作者 Xiujuan Xu Xiaotong Wei +2 位作者 Liangliang Xu Minghua Huang Arafat Toghan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期116-125,I0005,共11页
From the perspective of electronic structure modulation,it is highly desirable to rationally design the active urea oxidation reaction(UOR)catalysts through interface engineering.The binary cooperative heterostructure... From the perspective of electronic structure modulation,it is highly desirable to rationally design the active urea oxidation reaction(UOR)catalysts through interface engineering.The binary cooperative heterostructure systems have been shown significant enhancement for catalyzing UOR,but their performance still remains unsatisfactory for industrialization because of the unfavorable intermediate adsorption/desorption and deficient electron transfer channels.In response,taking the ternary cooperative Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) heterostructure as the proof-of-concept paradigm,a catalytic model is rationally put forward to elucidate the UOR promotion mechanism at the molecular level.The rod-like Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) nanoarrays with three-phase heterojunction are experimentally fabricated on Ni foam(named as Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4)/NF)via simple two-step processes.The density functional theory calculations disclose that construction of Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) heterostructure model not only induce charge redistribution at the interfacial region for creating innumerable electron transfer channels,but also endow it with a moderate d-band center that could help to build a balance between adsorption and desorption of diverse UOR intermediates.Benefiting from the unique rod-like nanoarrays with large specific surface area and the optimized electronic structure,the well-designed Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4)/NF could act as a robust catalyst for driving UOR at industrial-level current densities under tough environments,offering great potential for commercial applications. 展开更多
关键词 urea oxidation reaction Ternary cooperative heterostructure Electronic structure Interface engineering
下载PDF
Electrochemical urea synthesis by co-reduction of CO_(2) and nitrate with Fe^(Ⅱ)-Fe^(Ⅲ)OOH@BiVO_(4) heterostructures
19
作者 Hua-Qing Yin Zuo-Shu Sun +3 位作者 Qiu-Ping Zhao Lu-Lu Yang Tong-Bu Lu Zhi-Ming Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期385-393,共9页
Traditional urea synthesis under harsh conditions is usually associated with high energy input and has aroused severe environmental concerns.Electrocatalytic C-N coupling by converting nitrate and CO_(2) into urea und... Traditional urea synthesis under harsh conditions is usually associated with high energy input and has aroused severe environmental concerns.Electrocatalytic C-N coupling by converting nitrate and CO_(2) into urea under ambient conditions represents a promising alternative process.But it was still limited by the strong competition between nitrate electrochemical reduction(NO_(3)ER) and CO_(2) electrochemical reduction(CO_(2)ER).Here,Fe^(Ⅱ)-Fe~ⅢOOH@BiVO_(4)-n heterostructures are constructed through hydrothermal synthesis and exhibited superior performance toward urea electrosynthesis with NO_(3)~-and CO_(2) as feedstocks.The optimized urea yield and Faradaic efficiency over Fe^(Ⅱ)-Fe~ⅢOOH@BiVO_(4)-2 can reach13.8 mmol h^(-1) g^(-1) and 11.5% at-0.8 V vs.reversible hydrogen electrode,which is much higher than that of bare FeOOH(3.2 mmol h^(-1) g^(-1) and 1.3%),pristine BiVO_(4)(2.0 mmol h^(-1) g^(-1) and 5.4%),and the other Fe^(Ⅱ)-Fe~ⅢOOH@BiVO_(4)-n(n=1,3,5) heterostructures.Systematic experiments have verified that BiVO_(4)and FeOOH are subreaction active sites towards simultaneous CO_(2)ER and NO_(3)ER,respectively,achieving co-activation of CO_(2) and NO_(3)~-on Fe^(Ⅱ)-Fe~ⅢOOH@BiVO_(4)-2.Moreover,the urea synthesis via the ^(*)CO and NO*intermediates and C-N coupling was confirmed by the in situ Fourier transform infrared spectroscopy.This work not only alleviates the CO_(2) emission and nitrate pollution but also presents an efficient catalyst for synergistic catalysis towards sustainable urea synthesis. 展开更多
关键词 ELECTROCATALYSIS urea synthesis CO_(2)reduction Nitrate conversion
下载PDF
Boosted urea electro-oxidation over Ni_(3)N-based nanocomposite via systematic regulation tactic
20
作者 Ping Li Yuqi Huang +2 位作者 Quhua Huang Wenqin Li Shuanghong Tian 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期479-490,I0013,共13页
Exploiting high-efficiency Ni-based materials for electrocatalytic urea oxidation reaction(UOR) is critical for urea-related technologies.The catalytic site density,intrinsic activity,charge transfer,and mass diffusio... Exploiting high-efficiency Ni-based materials for electrocatalytic urea oxidation reaction(UOR) is critical for urea-related technologies.The catalytic site density,intrinsic activity,charge transfer,and mass diffusion determine overall electrocatalytic efficiency.Simultaneous modulation over the above four factors promises advanced electrocatalysis,yet challenging.Herein we propose a systematic regulation tactic over composition and geometric structure,constructing a nanocomposite comprising Mn doped Ni_(3)N nanoparticles anchored on reduced graphene oxide(rGO/Mn-Ni_(3)N),achieving elegant integration of four design principles into one,thereby eminently boosting UOR.Particularly,Mn doping in Ni_(3)N can modulate electronic state to induce intrinsic activity regulation.Combining metallic Mn-Ni_(3)N with rGO to engineer hierarchical architecture not only promotes charge transfer,but also enriches active site population.Intriguingly,improved hydrophilicity could impart better electrolyte penetration and gas escape.Consequently,such system-optimized rGO/Mn-Ni_(3)N demonstrates state-of-the-art-level UOR electrocatalysis.This work offers a novel paradigm to create advanced catalysts via systematic and integrated modulation. 展开更多
关键词 Ni_(3)N Geometric structure Composition engineering Systematic regulation urea oxidation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部