For a robust design of vacuum vessel of HL-2M, the electromagnetic (EM) loads have to be understood clearly. In this paper, some crucial transient events, such as plasma major disruptions (MDs), vertical displacem...For a robust design of vacuum vessel of HL-2M, the electromagnetic (EM) loads have to be understood clearly. In this paper, some crucial transient events, such as plasma major disruptions (MDs), vertical displacement events (VDEs), fast discharge of toroidal field (TF) coils, have been investigated to evaluate the eddy currents and EM forces on vacuum vessel and in-vessel components. The results show that the eddy currents depend strongly on the current decay time, and the maximum toroidal eddy current flowing in the whole vessel can reach up to 2.4 MA during MDs that is close to the plasma current. Large symmetric radial forces and a net vertical force on vessel shells could be caused by these transient events. Combination of eddy currents in in-vessel components and toroidal field could twist the copper plates and other internal parts, however, if these plates are supported and connected carefully, the twist moments will not have a big effect on the vessel shells and vessel support.展开更多
Numerical simulation approaches are developed to compute the electromagnetic forces on the EAST vacuum vessel during major disruptions and vertical displacement events, with the halo current also considered. The finit...Numerical simulation approaches are developed to compute the electromagnetic forces on the EAST vacuum vessel during major disruptions and vertical displacement events, with the halo current also considered. The finite element model built with ANSYS includes the vacuum vessel, the plasma facing components and their support structure, and the toroidal and poloidal field coils. The numerical methods are explained to convince of its validity. The eddy current induced by the magnetic flux variation and the conducting current caused by the halo current are also presented for discussion. The electromagnetic forces resulting from the numerical simulation are proven to be useful for structure design optimization. Similar methods can be applied in the upgrades of the EAST device.展开更多
Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outb...Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outboard mid-plane and thirty-two vertical ports on the top and bottom are designed for diagnostics, plasma heating, current driving, vacuum pumping and gas puffing. Bellows on these port necks are used for flexible components to absorb the relative displacement in radial and vertical directions due to external load, thermal expansion or contrac-tion and assembly tolerance, and also used for isolation of mechanical vibration. For the support system of vacuum vessel it should be not only strong enough to withstand forces acting on the vessel interior components and the vessel itself due to the dead weight and electromagnetic inter-actions during plasma disruption, but also sufficiently flexible to be suited to thermal expansion during baking. In order to solve this contradiction a new kind of low rigid support has been designed, which has a perfectly rigid in vertical direction and perfectly soft in radial direction. Some three-dimension finite element COSMOS models were performed to analyze their structural strength, stiffness and fatigue life, with an emphasis on the static stress analysis. The load spectra during vacuum vessel operation were also simulated on these models in the view of fatigue design. It was confirmed that the bellows and support had sufficient strength in the designed range of the load conditions. The results showed that the peak stress on bellows was 87 MPa and on the support system was 97 MPa. Now all kinds of bellows and support system have been designed. In order to accumulate some engineering experiences and probe into some molding die and welding technologies, prototypical bellows and support system have been fabricated. At the same time a mechanical testing apparatus was designed for proof tests on the prototypical bellows and support to verify their functional and structure capability. The experimental data indicated that the re-sults of finite element analysis were coincident with experimental test results. It has been proved that the present vacuum vessel's bellows and support system are reasonable and feasible.展开更多
EAST (experimental advanced superconducting tokamak) is an advanced steadystate plasma physics experimental device, which is being constructed as the Chinese National Nuclear Fusion Research Project. During the plas...EAST (experimental advanced superconducting tokamak) is an advanced steadystate plasma physics experimental device, which is being constructed as the Chinese National Nuclear Fusion Research Project. During the plasma operation the vacuum vessel as one of the key component will withstand the electromagnetic force due to the plasma disruption, the Halo current and the toroidal field coil quench, the pressure of boride water and the thermal load due to 250℃ baking by pressurized nitrogen gas. In this paper a report of the static and dynamic mechanical analyses of the vacuum vessel is made. Firstly the applied loads on the vacuum vessel were given and the static stress distribution under the gravitational loads, the pressure loads, the electromagnetic loads and thermal loads were investigated. Then a series of primary dynamic, buckling and fatigue life analyses were performed to predict the structure's dynamic behavior. A seismic analysis was also conducted.展开更多
The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross...The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.展开更多
A method is presented to express the electrical parameters of the vacuum vessel in this paper. According to the results of numerical computation and the distribution of the eddy currents, the mutual inductance can be ...A method is presented to express the electrical parameters of the vacuum vessel in this paper. According to the results of numerical computation and the distribution of the eddy currents, the mutual inductance can be given by calculating the flux produced by the toroidal eddy currents. The time constants of the vacuum vessel of HT-7U tokamak are derived from the decay characteristics of the eddy currents.展开更多
The vacuum vessel of the HT-7U superconducting Tokamak is designed as an allmetal welded double-wall structure with a number of radial and vertical ports. With characteristicsof ultrahigh vacuum and thin shell, the an...The vacuum vessel of the HT-7U superconducting Tokamak is designed as an allmetal welded double-wall structure with a number of radial and vertical ports. With characteristicsof ultrahigh vacuum and thin shell, the analysis on stability is very important to the design. Toachieve a successful final design, a threedimension buckling model has been performed using thefinite element program CoSMOS/M2.0. For all the cases having been considered, a 1/16 segmentof the whole toric shell are used to calculate the linear critical buckling load (Pc.,,) under auniform and nonwhform external pressure. As expected, the structure has a good capability ofwithstanding the applied loads.展开更多
The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS...The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS code in terms of its structural features. Static analysis, thermal expansion analysis and dynamic analysis are performed. The static results show that the stress and displacement distribution are allowable, but the high stress appears in the junction between the upper and lower parts. The modal analysis indicates that the biggest deformation exists in the port area. Through modal superposition, the single-point response has been found with the lower rank frequency of the acceleration seismic response spectrum. But the deformation and the stress values are within the permissible limit. The analysis results would benefit the work in the next step and provide some reference for the implementation of the engineering plan in the future.展开更多
负离子源测试平台是用于开展未来磁约束聚变装置中性束注入系统负离子束源性能研究的测试装置。研究分析了负离子束源性能特征及测试方法,基于测试平台工程及物理设计需求,完成了国内首台以盒形壳体作为结构模式的大功率负离子源中性束...负离子源测试平台是用于开展未来磁约束聚变装置中性束注入系统负离子束源性能研究的测试装置。研究分析了负离子束源性能特征及测试方法,基于测试平台工程及物理设计需求,完成了国内首台以盒形壳体作为结构模式的大功率负离子源中性束注入系统(Negative ion based Neutral Beam Injection system,NNBI)束源测试平台真空室的结构设计及重要部件的集成。运用ANSYS Workbench软件建立有限元模型,数值分析了真空室结构静态力学特性,得到了应力与变形分布规律,并通过应力线性化分类处理与响应面的方法分别进行了各类应力评估和束线真空室变形最大的后端封头的结构优化。结果表明:真空室的结构强度与变形量均满足工程设计需求,优化后的封头变形幅值显著降低,为负离子源测试平台的集成设计优化与研制奠定了基础,具有工程应用价值。展开更多
文摘For a robust design of vacuum vessel of HL-2M, the electromagnetic (EM) loads have to be understood clearly. In this paper, some crucial transient events, such as plasma major disruptions (MDs), vertical displacement events (VDEs), fast discharge of toroidal field (TF) coils, have been investigated to evaluate the eddy currents and EM forces on vacuum vessel and in-vessel components. The results show that the eddy currents depend strongly on the current decay time, and the maximum toroidal eddy current flowing in the whole vessel can reach up to 2.4 MA during MDs that is close to the plasma current. Large symmetric radial forces and a net vertical force on vessel shells could be caused by these transient events. Combination of eddy currents in in-vessel components and toroidal field could twist the copper plates and other internal parts, however, if these plates are supported and connected carefully, the twist moments will not have a big effect on the vessel shells and vessel support.
基金supported by National Natural Science Foundation of China(No.11202207) Hefei Institutes of Physical Science,CAS Innovation Foundation(Y15FZ10133)
文摘Numerical simulation approaches are developed to compute the electromagnetic forces on the EAST vacuum vessel during major disruptions and vertical displacement events, with the halo current also considered. The finite element model built with ANSYS includes the vacuum vessel, the plasma facing components and their support structure, and the toroidal and poloidal field coils. The numerical methods are explained to convince of its validity. The eddy current induced by the magnetic flux variation and the conducting current caused by the halo current are also presented for discussion. The electromagnetic forces resulting from the numerical simulation are proven to be useful for structure design optimization. Similar methods can be applied in the upgrades of the EAST device.
基金This work was supported by the National Meg-Science Engineering Project of the Chinese Gorernment
文摘Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outboard mid-plane and thirty-two vertical ports on the top and bottom are designed for diagnostics, plasma heating, current driving, vacuum pumping and gas puffing. Bellows on these port necks are used for flexible components to absorb the relative displacement in radial and vertical directions due to external load, thermal expansion or contrac-tion and assembly tolerance, and also used for isolation of mechanical vibration. For the support system of vacuum vessel it should be not only strong enough to withstand forces acting on the vessel interior components and the vessel itself due to the dead weight and electromagnetic inter-actions during plasma disruption, but also sufficiently flexible to be suited to thermal expansion during baking. In order to solve this contradiction a new kind of low rigid support has been designed, which has a perfectly rigid in vertical direction and perfectly soft in radial direction. Some three-dimension finite element COSMOS models were performed to analyze their structural strength, stiffness and fatigue life, with an emphasis on the static stress analysis. The load spectra during vacuum vessel operation were also simulated on these models in the view of fatigue design. It was confirmed that the bellows and support had sufficient strength in the designed range of the load conditions. The results showed that the peak stress on bellows was 87 MPa and on the support system was 97 MPa. Now all kinds of bellows and support system have been designed. In order to accumulate some engineering experiences and probe into some molding die and welding technologies, prototypical bellows and support system have been fabricated. At the same time a mechanical testing apparatus was designed for proof tests on the prototypical bellows and support to verify their functional and structure capability. The experimental data indicated that the re-sults of finite element analysis were coincident with experimental test results. It has been proved that the present vacuum vessel's bellows and support system are reasonable and feasible.
基金supported by the Meg-Science Engineering Project of the Chinese GovernmentNational Natural Science Foundation of China (No. 10405024)
文摘EAST (experimental advanced superconducting tokamak) is an advanced steadystate plasma physics experimental device, which is being constructed as the Chinese National Nuclear Fusion Research Project. During the plasma operation the vacuum vessel as one of the key component will withstand the electromagnetic force due to the plasma disruption, the Halo current and the toroidal field coil quench, the pressure of boride water and the thermal load due to 250℃ baking by pressurized nitrogen gas. In this paper a report of the static and dynamic mechanical analyses of the vacuum vessel is made. Firstly the applied loads on the vacuum vessel were given and the static stress distribution under the gravitational loads, the pressure loads, the electromagnetic loads and thermal loads were investigated. Then a series of primary dynamic, buckling and fatigue life analyses were performed to predict the structure's dynamic behavior. A seismic analysis was also conducted.
文摘The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.
文摘A method is presented to express the electrical parameters of the vacuum vessel in this paper. According to the results of numerical computation and the distribution of the eddy currents, the mutual inductance can be given by calculating the flux produced by the toroidal eddy currents. The time constants of the vacuum vessel of HT-7U tokamak are derived from the decay characteristics of the eddy currents.
文摘The vacuum vessel of the HT-7U superconducting Tokamak is designed as an allmetal welded double-wall structure with a number of radial and vertical ports. With characteristicsof ultrahigh vacuum and thin shell, the analysis on stability is very important to the design. Toachieve a successful final design, a threedimension buckling model has been performed using thefinite element program CoSMOS/M2.0. For all the cases having been considered, a 1/16 segmentof the whole toric shell are used to calculate the linear critical buckling load (Pc.,,) under auniform and nonwhform external pressure. As expected, the structure has a good capability ofwithstanding the applied loads.
基金the National 973 program of China(No.2004CB720704)
文摘The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS code in terms of its structural features. Static analysis, thermal expansion analysis and dynamic analysis are performed. The static results show that the stress and displacement distribution are allowable, but the high stress appears in the junction between the upper and lower parts. The modal analysis indicates that the biggest deformation exists in the port area. Through modal superposition, the single-point response has been found with the lower rank frequency of the acceleration seismic response spectrum. But the deformation and the stress values are within the permissible limit. The analysis results would benefit the work in the next step and provide some reference for the implementation of the engineering plan in the future.
文摘负离子源测试平台是用于开展未来磁约束聚变装置中性束注入系统负离子束源性能研究的测试装置。研究分析了负离子束源性能特征及测试方法,基于测试平台工程及物理设计需求,完成了国内首台以盒形壳体作为结构模式的大功率负离子源中性束注入系统(Negative ion based Neutral Beam Injection system,NNBI)束源测试平台真空室的结构设计及重要部件的集成。运用ANSYS Workbench软件建立有限元模型,数值分析了真空室结构静态力学特性,得到了应力与变形分布规律,并通过应力线性化分类处理与响应面的方法分别进行了各类应力评估和束线真空室变形最大的后端封头的结构优化。结果表明:真空室的结构强度与变形量均满足工程设计需求,优化后的封头变形幅值显著降低,为负离子源测试平台的集成设计优化与研制奠定了基础,具有工程应用价值。