期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Influence of Vegetation Coverage on Surface Runoff and Soil Moisture in Rainy Season in Dry-hot Valley 被引量:7
1
作者 郭芬芬 南岭 +1 位作者 陈安强 刘刚才 《Agricultural Science & Technology》 CAS 2010年第4期138-143,共6页
[Objective]The research aimed to study the effects of vegetation coverage on the changes of soil moisture in rainy season in dry-hot valley.[Method]The surface runoff and soil moisture of slope with vegetation coverag... [Objective]The research aimed to study the effects of vegetation coverage on the changes of soil moisture in rainy season in dry-hot valley.[Method]The surface runoff and soil moisture of slope with vegetation coverage and bare land in rainy reason in Jinsha River at Yuanmou County of Yunnan Province were observed continuously.Moreover,the statistical analysis was made based on the observation data.[Result]The vegetation coverage could decrease surface runoff and the surface runoff on bare land(CK) was 22 times as the plot with vegetation coverage.The soil water content in 0-180 cm layer with vegetation coverage increased by 37.8% than bare land.The stability of soil moisture content in deep layer was enhanced and the physical properties stability of soil was maintained.The soil moisture content in different depth of soil had significant difference and the changes of soil moisture content were obviously different.[Conclusion]The vegetation coverage of slope could change the soil hydrology obviously and keep soil moisture at the higher level,especially at soil layer below 20 cm. 展开更多
关键词 vegetation coverage Surface runoff Soil moisture Dry-hot valley
下载PDF
Effects of Vegetation Coverage and Management Practice on Soil Nitrogen Loss by Erosion in a Hilly Region of the Loess Plateau in China 被引量:21
2
作者 张兴昌 邵明安 《Acta Botanica Sinica》 CSCD 2003年第10期1195-1203,共9页
Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of compreh... Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of comprehensive management for catchments mainly by adjusting cropland, grassland and woodland areas was widely adopted to reduce soil and water loss in catchments of the Chinese Loess Plateau. Three experiments under natural and artificial rainfall conditions on N loss by erosion for a model catchment and for an actual catchment in Zhifanggou of Ansai County in China was performed to determine the relationships between comprehensive management and N loss by runoff in small catchments. The results for vegetation coverage of 60%, 40%, 20% and 0 show that runoff loss of ammonium, nitrate, and total N were 87.08, 44.31, 25.16, 13.71 kg/km(2); 85.50, 74.06, 63.95, 56.23 kg/km(2); and 0.18, 1.18, 1.98, 7.51 t/ km(2), respectively. Due to reduction in the size of cropped area on steeply sloping land, soil N loss by erosion in the catchments was decreased by 15.8% as compared with that in 1992, i.e., from 8 758.5 kg in 1992 to 7 562.2 kg in 1998. Whereas, catchments act as a filter for ammonium and nitrate in rain, the catchment filtering effects on nitrate is remarkably higher than that on ammonium. The enrichment of < 20 mum aggregate in sediment results in the enrichment of organic matter and total N in flood sediment. Greater vegetation coverage can effectively decrease soil erosion and total N loss. However, soil mineral N loss increased as vegetation coverage increased. 展开更多
关键词 vegetation coverage management practice soil nitrogen loss by erosion
下载PDF
Influence of groundwater level change on vegetation coverage and their spatial variation in arid regions 被引量:6
3
作者 苏里坦 宋郁东 玛丽娜 《Journal of Geographical Sciences》 SCIE CSCD 2004年第3期323-329,共7页
Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application ... Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application of geo-statistics. Results showed that the variance curve of the groundwater depth and vegetation coverage displays an exponential model. Analysis of sampling data in 2003 indicates that the groundwater depth and vegetation coverage change similarly in space in this area. The Sangong River Basin is composed of upper oasis, middle ecotone and lower sand dune. In oasis and ecotone, influenced by irrigation of the adjoining oasis, groundwater level has been raised and soil water content also increased compared with sand dune nearby, vegetation developed well. But in the lower reaches of the Sangong River Basin, because of descending of groundwater level, soil water content decreased and vegetation degenerated. From oasis to abandoned land and desert grassland, vegetation coverage and groundwater level changed greatly with significant difference respectively in spatial variation. Distinct but similar spatial variability exists among the groundwater depth and vegetation coverage in the study area, namely, the vegetation coverage decreasing (increasing) as the groundwater depth increases (decreases). This illustrates the great dependence of vegetation coverage on groundwater depth in arid regions and further implies that among the great number of factors affecting vegetation coverage in arid regions, groundwater depth turns out to be the most determinant one. 展开更多
关键词 geo-statistics groundwater level groundwater depth arid regions vegetation coverage semi-variance function spatial variation KRIGING
下载PDF
Investigating natural drivers of vegetation coverage variation using MODIS imagery in Qinghai, China 被引量:6
4
作者 ZHOU Lei LYU Aifeng 《Journal of Arid Land》 SCIE CSCD 2016年第1期109-124,共16页
The climatically sensitive Qinghai province of China has been recognized as a hotspot for studies on the feedbacks of terrestrial ecosystems to global climate change. Thus, investigating vegetation coverage and its na... The climatically sensitive Qinghai province of China has been recognized as a hotspot for studies on the feedbacks of terrestrial ecosystems to global climate change. Thus, investigating vegetation coverage and its natural drivers in Qinghai is an important focus of ecosystem research. On the basis of Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) time series data, we estimated the vegetation coverage in this region using the dimidiate pixel model. Trend analyses, correlations between meteorological parameters, changes in vegetation coverage, and the temporal and spatial relationships between soil texture and vegetation coverage were used to investigate the possible drivers of vegetation coverage variations. The results indicated that the reduction of vegetation coverage slowed down in the period from 2000 to 2012. Annual mean temperature was the main climatic driver of the total extremely low and low vegetation coverage areas in Qinghai, followed by the precipitation anomalies. The extremely low and low vegetation coverage areas were mainly distributed in regions with a mean annual relative air humidity of <40% and the spatial distributions of these two area types differentiated along the 200-mm rainfall contours. The total extremely low and low vegetation coverage areas were mainly characterized by sandy clay loam soil, followed by loamy sand and sandy soil. Regions with sandy loam or loam soil have the greatest risk of vegetation coverage reductions. Knowledge of vegetation coverage variation and its natural drivers in the ecologically fragile region of Qinghai can provide scientific support for managing environmental change and desertification. 展开更多
关键词 vegetation coverage remote sensing MODIS climate change
下载PDF
Modeling and analysis of effects of precipitation and vegetation coverage on runoff and sediment yield in Jinsha River Basin 被引量:6
5
作者 Jun DU Chang-xing SHI Chen-di ZHANG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期44-58,共15页
This paper focuses on the effects of precipitation and vegetation coverage on runoff and sediment yield in the Jinsha River Basin. Results of regression analysis were taken as input variables to investigate the applic... This paper focuses on the effects of precipitation and vegetation coverage on runoff and sediment yield in the Jinsha River Basin. Results of regression analysis were taken as input variables to investigate the applicability of the adaptive network-based fuzzy inference system (ANFIS) to simulating annual runoff and sediment yield. Correlation analysis indicates that runoff and sediment yield are positively correlated with the precipitation indices, while negatively correlated with the vegetation indices. Furthermore, the results of stepwise regression show that annual precipitation is the most important factor influencing the variation of runoff, followed by forest coverage, and their contributions to the variation ofrunoffare 69.8% and 17.3%, respectively. For sediment yield, rainfall erosivity is the most important factor, followed by forest coverage, and their contributions to the variation of sediment yield are 49.3% and 24.2%, respectively. The ANFIS model is of high precision in runoff forecasting, with a relative error of less than 5%, but of poor precision in sediment yield forecasting, indicating that precipitation and vegetation coverage can explain only part of the variation of sediment yield, and that other impact factors, such as human activities, should be sufficiently considered as well. 展开更多
关键词 PRECIPITATION vegetation coverage RUNOFF sediment yield adaptive network-basedfuzzy inference system (ANFIS) Jinsha River Basin
下载PDF
Monitoring of vegetation coverage based on high-resolution images 被引量:3
6
作者 Zhang Li Li Li-juan +1 位作者 Liang Li-qiao Li Jiu-yi 《Forestry Studies in China》 CAS 2007年第4期256-261,共6页
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin... Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage. 展开更多
关键词 vegetation coverage remote sensing measurement high-resolution image OBJECT-ORIENTATION
下载PDF
Vegetation Coverage Changes in the West Qinling Region from 2000 to 2010:A Case Study of Longnan City
7
作者 Ming FANG Qiuqiu LI +1 位作者 Chuansheng WANG Meng LI 《Asian Agricultural Research》 2016年第8期81-85,90,共6页
As the main content of terrestrial ecosystem study,vegetation coverage change has gained extensive attention in the process of global climate change and sustainable development recently.Based on MODIS NDVI data from J... As the main content of terrestrial ecosystem study,vegetation coverage change has gained extensive attention in the process of global climate change and sustainable development recently.Based on MODIS NDVI data from June to October during 2000-2010,taking Longnan City as a case area,this paper develops the calculation method of vegetation coverage(VC) by using Pixel Dichotomy model and analyzes the spatial-temporal variation of vegetation coverage in the West Qinling region by using simple linear regression and standard deviation method.The results show that vegetation coverage remains stable and is significantly correlated with temperature and precipitation during the decade.The vegetation coverage of 90% of study area shows stability with small annual variation and also is consistent with the spatial distribution of forest land;the vegetation coverage in the remaining study areas shows a growing trend with significant variation and also is consistent with the spatial distribution of farmland and grassland,especially in Huicheng Basin,Xili Basin and adret slope of Bailongjiang River Valley,indicating that Project about the Conversion of Degraded Farmland into Forest has made a great contribution to vegetation coverage increase.This paper proves the effect of ecology construction in the West Qinling region since the late 20 th century.All the findings also provide references for local ecological environment construction and sustainable development. 展开更多
关键词 vegetation coverage Spatial and temporal change West Qinling Region
下载PDF
Evaluation of Erosion Rates in Relation to Vegetation Coverage Level-Case Study:Kukësi and Hasi Regions,Albania
8
作者 Oltion Marko Joana Gjipalaj +2 位作者 Blerina Beqaj Konalsi Gjoka Sali Fazliu 《Journal of Environmental Science and Engineering(B)》 2022年第6期225-228,共4页
Soil erosion is one of the most destructive phenomena of earth causing the loss of land,leading to increased pollution and sedimentation in streams and rivers,clogging these waterways.Due to soil erosion,degraded land... Soil erosion is one of the most destructive phenomena of earth causing the loss of land,leading to increased pollution and sedimentation in streams and rivers,clogging these waterways.Due to soil erosion,degraded lands are also often less able to hold onto water,which can worsen flooding.Among all natural causes of soil erosion such as rainfall intensity,temperature and wind,the human activity;massive deforestation and intensive agriculture,including the latest climate changes are considered as very important factors especially nowadays.Thus,evaluating the soil erosion appears very important in order to prevent the phenomena.In this study the soil erosion in forest and pasture areas in Kukësi and Hasi regions(Albania)was evaluated,and classified depending on the degree of coverage by forest vegetation.Detailed information for the above factor was gathered from site visits and national databases of different institutions.Results show that erosion is present in forest and pasture areas in Kukësi and Hasi Regions and is mainly caused by human activities such as large deforestation,intensive use of agricultural land,etc.There is a need to take effective measures and use advanced methods to prevent or control soil erosion not only in Kukësi and Hasi regions,but in all Albanian watersheds. 展开更多
关键词 Soil erosion vegetation coverage Albania
下载PDF
Estimating the optimal vegetation coverage for the dominant tree and shrub species over China's northwest drylands
9
作者 Zhongdian ZHANG Xiaoxu JIA +3 位作者 Ping ZHU Mingbin HUANG Lidong REN Ming’an SHAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第5期1500-1517,共18页
Anthropogenic revegetation is an effective way to control soil erosion and restore degraded ecosystems in China's northwest drylands(NWD).However,excessive vegetation cover expansion has long been known to increas... Anthropogenic revegetation is an effective way to control soil erosion and restore degraded ecosystems in China's northwest drylands(NWD).However,excessive vegetation cover expansion has long been known to increase evapotranspiration,leading to reduced local water availability,which can in turn threaten the health and services of restored ecosystems.Determining the optimal vegetation coverage(OVC)is critical for balancing the trade-off between plant growth and water consumption in water-stressed areas,yet quantitative assessments over the entire NWD are still lacking.In this study,a modified Biome BioGeochemical Cycles(Biome-BGC)model was used to simulate the long-term(1961–2020)dynamics of actual evapotranspiration(ET_(a)),net primary productivity(NPP),and leaf area index(LAI)for the dominant non-native tree(R.pseudoacacia and P.sylvestris)and shrub(C.korshinkii and H.rhamnoides)species at 246 meteorological sites over NWD.The modified model incorporated the Richards equation to simulate transient unsaturated water flow in a multilayer soil module,and both soil and eco-physiological parameters required by the model were validated using field-observed ETadata for each species.Spatial distributions of OVC(given by the mean maximum LAI,LAI_(max))for the dominant species were determined within three hydrogeomorphic sub-areas(i.e.,the loess hilly-gully sub-area,the windy and sandy sub-area,and the desert sub-area).The modified Biome-BGC model performed well in terms of simulating ET_(a) dynamics for the four plant species.Spatial distributions of mean ET_a,NPP,and LAI_(max)generally exhibited patterns similar to mean annual precipitation(MAP).In the loess hilly-gully sub-area(MAP:210 to 710 mm),the OVC respectively ranged from 1.7 to 2.9 and 0.8 to 2.9 for R.pseudoacacia and H.rhamnoides.In the windy and sandy sub-area(MAP:135 to 500 mm),the OVC ranged from 0.3 to 3.3,0.5 to 2.6 and 0.6 to 2.1for P.sylvestris,C.korshinkii and H.rhamnoides,respectively.In the desert sub-area(MAP:90 to 500 mm),the OVC ranged from 0.4 to 1.7 for H.rhamnoides.Positive differences between observed and simulated plant coverage were found over 51%of the forest-and shrub-covered area,especially in the loess hilly-gully sub-area,suggesting possible widespread overplanting in those areas.This study provides critical revegetation thresholds for dominant tree and shrub species to guide future revegetation activities.Further revegetation in areas with overplanting should be undertaken with caution,and restored ecosystems that exceed the OVC should be managed(e.g.,thinning)to maintain a sustainable ecohydrological environment in the drylands. 展开更多
关键词 Optimal vegetation coverage Water balance Leaf area index Biome-BGC model DRYLAND
原文传递
Feature extraction and analysis of reclaimed vegetation in ecological restoration area of abandoned mines based on hyperspectral remote sensing images
10
作者 MAO Zhengjun WANG Munan +3 位作者 CHU Jiwei SUN Jiewen LIANG Wei YU Haiyong 《Journal of Arid Land》 SCIE CSCD 2024年第10期1409-1425,共17页
The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric ... The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation. 展开更多
关键词 hyperspectral remote sensing abandoned mine ecological restoration vegetation growth status vegetation index vegetation coverage
下载PDF
Detecting Vegetation Fractional Coverage of Typical Steppe in Northern China Based on Multi-scale Remotely Sensed Data 被引量:15
11
作者 李晓兵 陈云浩 +1 位作者 史培军 陈晋 《Acta Botanica Sinica》 CSCD 2003年第10期1146-1156,共11页
One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enha... One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enhanced Thematic Mapper) image and the National Oceanic and Atmospheric Administration/the advanced very high resolution radiometer (NOAA/AVHRR) image were integrated to detect, simulate and analyze the vegetation fractional coverage of typical steppe in northern China. The results show: (1) Vegetation fractional coverage measured by digital camera is more precise than results measured by other methods. It can be used to validate other measuring results. (2) Vegetation fractional coverage measured by 1 m 2 field sample change fluctuantly for different observers and for different sample areas. In this experiment, the coverage is generally high compared with the result measured by digital camera, and the average absolute error is 9.92%, but two groups measure results, correlation coefficient r(2) = 0.89. (3) Three kinds of methods using remotely sensed data were adopted to simulate the vegetation fractional coverage. Average absolute errors of the vegetation fractional coverage, measured by ETM+ and NOAA, are respectively 7.03% and 7.83% compared with the result measured by digital camera. When NOAA pixel was decomposed by ETM+ pixels after geometrical registry, the average absolute errors measured by this method is 5.68% compared with the digital camera result. Correction coefficients of three results with digital camera result r(2) are respectively 0.78, 0.61 and 0.76. (4) The result of statistic model established by NOAA-NDVI (NDVI, Normalized Difference Vegetation Index) and the vegetation fractional coverage measured by digital camera show lower precision (r(2) = 0.65) than the result of statistic model established by ETM+-NDVI and digital camera coverage then converted to NOAA image (r(2) = 0.80). Pixel decomposability method improves the precision of measuring the vegetation fractional coverage on a large scale. This is a significant practice on scaling by using remotely sensed data. Integrated application of multi-scale remotely sensed data in earth observation will be an important approach to promoting measuring precision of ecological parameters. 展开更多
关键词 multi-scale remote sensing typical steppe vegetation fractional coverage
下载PDF
Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000-2011 被引量:52
12
作者 LIU Xianfeng ZHANG Jinshui +4 位作者 ZHU Xiufang PAN Yaozhong LIU Yanxu ZHANG Donghai LIN Zhihui 《Journal of Geographical Sciences》 SCIE CSCD 2014年第2期288-302,共15页
The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and hu... The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and human activities, ecological degradation oc- curred in this region. Therefore, "The nature reserve of Three-River Sou,'ce Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following: (1) In the past 12 years (2000-2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend. (2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure. (3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south. (4) The reverse characteristics of vegetation cov- erage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin. (5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature. (6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and the implementation of the ecological protection project. 展开更多
关键词 vegetation coverage spatiotemporal change future trend influence factors Three-River HeadwatersRegion
原文传递
Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001–2013 被引量:48
13
作者 GONG Zhaoning ZHAO Shuyi GU Jinzhi 《Journal of Geographical Sciences》 SCIE CSCD 2017年第2期143-160,共18页
Climate change is one of the most important factors that affect vegetation distribution in North China. Among all climatic factors, drought is considered to have the most significant effect on the environment. Based o... Climate change is one of the most important factors that affect vegetation distribution in North China. Among all climatic factors, drought is considered to have the most significant effect on the environment. Based on previous studies, the climate drought index can be used to assess the evolutionary trend of the ecological environment under various arid climatic conditions. It is necessary for us to further explore the relationship between vegetation coverage(index) and climate drought conditions. Therefore, in this study, based on MODIS-NDVI products and meteorological observation data, the Palmer Drought Severity Index(PDSI) and vegetation coverage in North China were first calculated. Then, the interannual variations of PDSI and vegetation coverage during 2001–2013 were analyzed using a Theil-Sen slope estimator. Finally, an ecoregion perspective of the correlation between them was discussed. The experimental results demonstrated that the PDSI index and vegetation coverage value varied over different ecoregions. During the period 2001–2013, vegetation coverage increased in the southern and northern mountains of North China, while it showed a decreasing trend in the Beijing-Tianjin-Tangshan City Circle area and suburban agricultural zone located in Hebei Province and Henan Province). Over 13 years, the climate of the northeastern part of North China became more humid, while in the southern part of North China, it tended to be dry. According to the correlation analysis results, 73.37% of North China showed a positive correlation between the vegetation coverage and climate drought index. A negative correlation was observed mainly in urban and suburban areas of Beijing, Tianjin, Hebei Province, and Henan Province. In most parts of North China, drought conditions in summer and autumn had a strong influence on vegetation coverage. 展开更多
关键词 North China vegetation coverage PDSI ECOREGION correlation analysis
原文传递
Spatiotemporal changeof vegetationcoverage recovery and its driving factors in the Wenchuan earthquake-hit areas 被引量:2
14
作者 SUN Xiao-fei YUAN Lin-guo +3 位作者 ZHOU Ying-zhi SHAO Huai-yong LI Xian-feng ZHONG Ping 《Journal of Mountain Science》 SCIE CSCD 2021年第11期2854-2869,共16页
Vegetation coverage recovery after the Wenchuan earthquake has important implications for preventing post-seismic geohazards and soil erosion.However,spatiotemporal changes in vegetation coverage recovery and its driv... Vegetation coverage recovery after the Wenchuan earthquake has important implications for preventing post-seismic geohazards and soil erosion.However,spatiotemporal changes in vegetation coverage recovery and its driving factors have not been sufficiently studied in the quake-hit areas.This paper aims to analyze vegetation coverage recovery and its driving factors in the quake-hit areas using monadic linear regression,coefficient of variation,and geographical detector.First,we used Moderate-resolution Imaging Spectroradiometer(MODIS)data to calculate the vegetation coverage from 2008 to 2018 in the quake-hit areas.Second,we assessed the trend and stability of vegetation recovery in the quake-hit areas based on vegetation coverage.Finally,combined with topography,climate,soil type,vegetation type,and human activities in the quake-hit areas,the driving factors affecting vegetation coverage recovery were analyzed.The results showed that the vegetation coverage level in the quake-hit areas recovered about 90%of that before the earthquake.Vegetation coverage recovery was mainly improved in a stepwise manner:increasing and then stabilizing,then increasing and stabilizing again.Elevation,soil type,and road density were the main factors affecting vegetation coverage recovery,and the interaction among all factors positively strengthened their impacts on vegetation coverage recovery.In addition,the results also revealed the categories that were conducive to vegetation coverage recovery among the same environmental factors and can provide a scientific reference for vegetation coverage recovery in the quake-hit areas. 展开更多
关键词 Wenchuan earthquake vegetation coverage recovery Geographical detector Driving factors
原文传递
Effect of sand-fixing vegetation on the hydrological regulation function of sand dunes and its practical significance 被引量:2
15
作者 Alamusa SU Yuhang +2 位作者 YIN Jiawang ZHOU Quanlai WANG Yongcui 《Journal of Arid Land》 SCIE CSCD 2023年第1期52-62,共11页
Soil water content is a key controlling factor for vegetation restoration in sand dunes.The deep seepage and lateral migration of water in dunes affect the recharge process of deep soil water and groundwater in sand d... Soil water content is a key controlling factor for vegetation restoration in sand dunes.The deep seepage and lateral migration of water in dunes affect the recharge process of deep soil water and groundwater in sand dune ecosystems.To determine the influence of vegetation on the hydrological regulation function of sand dunes,we examined the deep seepage and lateral migration of dune water with different vegetation coverages during the growing season in the Horqin Sandy Land,China.The results showed that the deep seepage and lateral migration of water decreased with the increase in vegetation coverage on the dunes.The accumulated deep seepage water of mobile dunes(vegetation coverage<5%)and dunes with vegetation coverage of 18.03%,27.12%,and 50.65%accounted for 56.53%,51.82%,18.98%,and 0.26%,respectively,of the rainfall in the same period.The accumulated lateral migration of water in these dunes accounted for 12.39%,6.33%,2.23%,and 7.61%of the rainfall in the same period.The direction and position of the dune slope affected the soil water deep seepage and lateral migration process.The amounts of deep seepage and lateral migration of water on the windward slope were lower than those on the leeward slope.The amounts of deep seepage and lateral migration of water showed a decreasing trend from the bottom to the middle and to the top of the dune slope.According to the above results,during the construction of sand-control projects in sandy regions,we suggest that a certain area of mobile dunes(>13.75%)should be retained as a water resource reservoir to maintain the water balance of artificial fixed dune ecosystems.These findings provide reliable evidence for the accurate assessment of water resources within the sand dune ecosystem and guide the construction of desertification control projects. 展开更多
关键词 vegetation coverage hydrological regulation soil water deep seepage sand dune water balance desertification control
下载PDF
Effects of vegetation coverage on the spatial distribution of soil nematode trophic groups
16
作者 Jianfeng HUA Yong JIANG Wenju LIANG 《Frontiers in Biology》 CSCD 2008年第1期63-67,共5页
The spatial variability of total soil nematodes and trophic groups in bare and fallow plots in Shenyang Experi-mental Station of Ecology,ChineseAcademy of Sciences was examined using geostatistics combined with classi... The spatial variability of total soil nematodes and trophic groups in bare and fallow plots in Shenyang Experi-mental Station of Ecology,ChineseAcademy of Sciences was examined using geostatistics combined with classic statistics.Results showed that the soil pH value had a negative effect on plant-parasites in both bare and fallow plots;the mean number of total nematodes was significantly higher in fallow plots than in bare plots,which was 1485.3 and 464.0 individuals per 100 g dry soil in fallow and bare plots,respectively;the nugget(C_(0))/sill(C_(0)+C)ratio of total nematodes,plant-parasites and bacterivores were lower in fallow plots(27.3%-45.6%)than in bare plots(49.5%-100%);the spatial distribution of total nematodes and trophic groups was found to be different between fallow and bare plots,which indicated that vegetation coverage had an effect on soil nematodes. 展开更多
关键词 vegetation coverage soil nematode trophic group spatial distribution GEOSTATISTICS
原文传递
Vegetation fractional coverage change in a typical oasis region in Tarim River Watershed based on remote sensing 被引量:12
17
作者 Fei ZHANG Tashpolat TIYIP +4 位作者 JianLi DING Mamat SAWUT Verner Carl JOHNSON NigaraTASHPOLAT DongWei GUI 《Journal of Arid Land》 SCIE CSCD 2013年第1期89-101,共13页
Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In... Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In this paper, the author conducted a case study of the delta oasis of Weigan and Kuqa rivers, which is a typical saline area in the Tarim River Watershed. The current study was based on the TM/ETM+ images of 1989, 2001, and 2006, and supported by Geographic Information System (GIS) spatial analysis, vegetation index, and dimidiate pixel model. In addition, VBSl (vegetation, bare soil and shadow indices) suitable for TM/ETM+ irrlages, constructed with FCD (forest canopy density) model principle and put forward by ITTO (International Tropical Timber Organization), was used, and it was applied to estimate the VFC. The estimation accuracy was later prow^n to be up to 83.52%. Further, the study analyzed and appraised the changes in vegetation patterns and revealed a pattern of spatial change in the vegetation coverage of the study area by producing the map of VFC levels in the delta oasis. Forest, grassland, and farmland were the three main land-use types with high and extremely-high coverage, and they played an important role in maintaining the vegetation. The forest area determined the changes of the coverage area, whereas the other two land types affected the directions of change. Therefore, planting trees, protecting grasslands, reclaiming farmlands, and controlling unused lands should be included in a long-term program because of their importance in keeping regional vegetation coverage. Finally, the dynamic variation of VFC in the study area was evaluated according to the quantity and spatial distribution rendered by plant cover diigital images to deeply analyze the reason behind the variation. 展开更多
关键词 vegetation fractional coverage (VFC) VBSI vegetation bare soil and shadow indices) dimidiate pixel model delta oasis of Weigan and Kuqa rivers
下载PDF
Vegetation change detection research of Dunhuang city based on GF-1 data 被引量:8
18
作者 Zhaopeng Zhang Zengyuan Li Xin Tian 《International Journal of Coal Science & Technology》 EI 2018年第1期105-111,共7页
This study selected the Dunhuang city with the unique landscape pattern, its oasis surround by desert, for studying the vegetation change. Based on two period GaoFen-1 images, combined with field survey data, the dimi... This study selected the Dunhuang city with the unique landscape pattern, its oasis surround by desert, for studying the vegetation change. Based on two period GaoFen-1 images, combined with field survey data, the dimidiate pixel model and fractional vegetation coverage estimation model were applied to detect the changes of local vegetation coverage from July 2013 to July 2015. Analysis showed that during the study years, the Grain for Green project had a remarkable effect on the changes. The vegetation types of intermediate high and very low grades increased by 0.66 and 6.78 km^2 respectively. The low vegetation coverage decreased by 23.87 km^2. The vegetation coverage types of intermediate grade increased by 88.97 km^2 because of the planted forest, which accounted for 10.84% of the study area. The vegetation coverage types of high grade reduced by 72.47 km^2. This change effectively prevents the spread of desert and lays a good foundation for the ecological construction of Dunhuang city. 展开更多
关键词 Dunhuang city GF-1 vegetation coverage Grain for green
下载PDF
Spatial distribution of vegetation and the influencing factors in Qaidam Basin based on NDVI 被引量:4
19
作者 WenBin ZHU AiFeng LV ShaoFeng JIA 《Journal of Arid Land》 SCIE 2011年第2期85-93,共9页
The spatial distribution of vegetation in Qaidam Basin was analyzed using GIMMS(Global Inventory Modeling and Mapping Studies) /NDVI(Normalized Difference Vegetation Index) data set from January 1982 to December 2... The spatial distribution of vegetation in Qaidam Basin was analyzed using GIMMS(Global Inventory Modeling and Mapping Studies) /NDVI(Normalized Difference Vegetation Index) data set from January 1982 to December 2006.Based on the data of precipitation,terrain,stream systems,land use and the map of vegetation distribution in Qaidam Basin,we studied the factors influencing the spatial distribution of vegetation.The results showed that the vegetation was generally low in Qaidam Basin and there was a clear semi-ring structure from southeast to northwest.In some areas,the existence of rivers,lakes and spring belts turned this semi-ring structure into a non-continuous state and formed distinct bright spots and continuous linear features.There were four main factors that affected the spatial distribution of vegetation coverage in Qaidam Basin,i.e.,precipitation,hydrological conditions,altitude and human activities.Precipitation and altitude have a correlation and determine the basic pattern of vegetation distribution in Qaidam Basin.The impacts of hydrological conditions and human activities were mainly embodied in partial areas,and often broke the pattern of vegetation distribution dominated by precipitation and altitude. 展开更多
关键词 NDVI vegetation coverage spatial differentiation hydrological conditions Qaidam Basin
下载PDF
Evolutionary trend of water cycle in Beichuan River Basin of China under the influence of vegetation restoration 被引量:7
20
作者 Liang Zhu Jing-tao Liu +2 位作者 Ming-nan Yang Yu-xi Zhang De-ping Wen 《Journal of Groundwater Science and Engineering》 2021年第3期202-211,共10页
The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected... The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected area.Magnetic data(n=84)measured,processed and interpreted as qualitative and quantitatively.The results of total magnetic intensities indicate that the area is composed of linear magnetic lows trending NE-SW direction and circular to semi-circular causative bodies.The magnetic values ranged from-137 nT to 2345 nT with a mean of 465 nT.Reduction to equator shows significant shifting of causative bodies in the southern and northern directions.Analytical signal map shows exact boundary of granitic bodies.Cosine directional filter has brought out structural element trending NE-SW direction.Results of individual profile brought to light structurally weak zone between 90 m and 100 m in all the profile lines.Sudden decrease of magnetic values from 2042 nT to 126 nT noticed in profile line 6 between 20 m and 30 m indicates fault occurrence.Magnetic breaks obtained from these maps were visualized,interpreted and identified two suitable sites for open and bore well.Radially averaged power spectrum estimates depth of shallow and deep sources in 5 m and 50 m,respectively.Euler method has also been applied to estimate depth of granitoid and structural elements using structural indexes 0,1,2,and 3 and found depth ranges from<10 m to>90 m.Study indicates magnetic method is one of the geophysical methods suitable for groundwater exploration and site selection for open and borewells. 展开更多
关键词 vegetation coverage Water cycle in a river basin Ecological water consumption Water conservation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部