Introduction:Rotatory chair testing has been used to evaluate horizontal canal function.Frequently used tests include sinusoidal harmonic acceleration test(SHAT)and velocity step test(VST).Objectives:Assessment of age...Introduction:Rotatory chair testing has been used to evaluate horizontal canal function.Frequently used tests include sinusoidal harmonic acceleration test(SHAT)and velocity step test(VST).Objectives:Assessment of age effect on the SHAT and VST and assessment of test-retest reliability of the parameters of those two tests.Methods:A prospective study was performed on 100 subjects with no ear or vestibular complaints and normal vestibular evaluation.They were divided into two groups;Group A:below 50 years of age and Group B:50 years of age or above.SHAT was presented at frequencies 0.02,0.04,0.08,0.16,0.32,0.64 Hz with a peak velocity of 60°/s.VST was performed using a maximum velocity of 100°/s with acceleration and deceleration of 200°/s2.Thirty subjects were tested twice to assess reliability.Results:Study participants ranged in age from 20 to 67 years.Regarding group A,the mean age was30.92±7.31 and 55.36±4.61 for group B.No significant differences were found in SHAT parameters between the two groups.As well,there was no significant difference in VST per-rotatory time constant,however,post-rotatory time constant was significantly longer for Group B(P value<0.05).Intraclass correlation coefficient(ICC)values showed moderate to good reliability(ICC 0.5800.818)for SHAT parameters for the lower frequencies and indicated moderate reliability for VST time constant(ICC 0.5090.652).Conclusions:Age has no significant effect on the parameters of SHAT and VST.Test-retest reliability is generally good for both tests.展开更多
Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as t...Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.展开更多
Hamilton Monte Carlo (HMC)方法是一种常用的快速抽样方法.在对哈密顿方程进行抽样时,HMC方法使用Leapfrog积分器,这可能造成方程的位置及动量的迭代值在时间上不同步,其产生的误差会降低抽样效率及抽样结果的稳定性.为此,本文提出了IH...Hamilton Monte Carlo (HMC)方法是一种常用的快速抽样方法.在对哈密顿方程进行抽样时,HMC方法使用Leapfrog积分器,这可能造成方程的位置及动量的迭代值在时间上不同步,其产生的误差会降低抽样效率及抽样结果的稳定性.为此,本文提出了IHMC(Improved HMC)方法,该方法用Velocity Verlet积分器替代Leapfrog积分器,每次迭代时都计算两变量在同一时刻的值.为验证方法的效果,本文进行了两个实验,一个是将该方法应用于非对称随机波动率模型(RASV模型)的参数估计,另一个是将方法应用于方差伽马分布的抽样,结果显示:IHMC方法比HMC方法的效率更高、结果更稳定.展开更多
An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic vel...An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities.This scheme is called a laser wakefield accelerator.In this work,we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields.We find that a 10-cm-long,nanoparticle-assisted laser wakefield accelerator can generate 340 pC,10±1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence.It can also produce bunches with lower energies in the 4–6 GeV range.展开更多
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia...The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.展开更多
Floods are one of the most serious natural disasters that can cause huge societal and economic losses.Extensive research has been conducted on topics like flood monitoring,prediction,and loss estimation.In these resea...Floods are one of the most serious natural disasters that can cause huge societal and economic losses.Extensive research has been conducted on topics like flood monitoring,prediction,and loss estimation.In these research fields,flood velocity plays a crucial role and is an important factor that influences the reliability of the outcomes.Traditional methods rely on physical models for flood simulation and prediction and could generate accurate results but often take a long time.Deep learning technology has recently shown significant potential in the same field,especially in terms of efficiency,helping to overcome the time-consuming associated with traditional methods.This study explores the potential of deep learning models in predicting flood velocity.More specifically,we use a Multi-Layer Perceptron(MLP)model,a specific type of Artificial Neural Networks(ANNs),to predict the velocity in the test area of the Lundesokna River in Norway with diverse terrain conditions.Geographic data and flood velocity simulated based on the physical hydraulic model are used in the study for the pre-training,optimization,and testing of the MLP model.Our experiment indicates that the MLP model has the potential to predict flood velocity in diverse terrain conditions of the river with acceptable accuracy against simulated velocity results but with a significant decrease in training time and testing time.Meanwhile,we discuss the limitations for the improvement in future work.展开更多
Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the ...Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.展开更多
We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this nu...We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this numerical work,we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases:without tailoring,by tailoring only the entrance side of the picosecond laser,and by tailoring both sides of the gas jet.Without tailoring,the acceleration is transverse to the laser axis,with a low-energy exponential spectrum,produced by Coulomb explosion.When the front side of the gas jet is tailored,a forward acceleration appears,which is significantly enhanced when both the front and back sides of the plasma are tailored.This forward acceleration produces higher-energy protons,with a peaked spectrum,and is in good agreement with the mechanism of collisionless shock acceleration(CSA).The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam.The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring.Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet.These parameters are in good agreement with those required for CSA.展开更多
Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling wi...Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.展开更多
A scheme for a quasi-monoenergetic high-flux neutron source with femtosecond duration and highly anisotropic angular distribution is proposed.This scheme is based on bulk acceleration of deuteron ions in an optical tr...A scheme for a quasi-monoenergetic high-flux neutron source with femtosecond duration and highly anisotropic angular distribution is proposed.This scheme is based on bulk acceleration of deuteron ions in an optical trap or density grating formed by two counter-propagating laser pulses at an intensity of-10^(16)W~cm^(2)in a near-critical-density plasma.The deuterons are first pre-accelerated to an energy of tens of keV in the ambipolar fields formed in the optical trap.Their energy is boosted to the MeV level by another one or two laser pulses at an intensity of-10^(20)W~cm^(2),enabling fusion reactions to be triggered with high efficiency.In contrast to previously proposed pitcher–catcher configurations,our scheme can provide spatially periodic acceleration structures and effective collisions between deuterons inside the whole target volume.Subsequently,neutrons are generated directly inside the optical trap.Our simulations show that neutron pulses with energy 2–8 MeV,yield 10^(18)–10^(19)n/s,and total number 106–107 in a duration-400 fs can be obtained with a 25μm target.Moreover,the neutron pulses exhibit unique angularly dependent energy spectra and flux distributions,predominantly along the axis of the energy-boosting lasers.Such microsize femtosecond neutron pulses may find many applications,such as high-resolution fast neutron imaging and nuclear physics research.展开更多
The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the acceler...The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the accelerated expansion of the 3-D Universe, as has already been confirmed experimentally being awarded the 2011 Nobel Prize in Physics. Theoretical calculations can estimate further to indicate the true nature of the acceleration;that the outward acceleration is due to the rotation of the Universe caused by Dark Energy from the Void, that the acceleration is non-linear, initially increasing from zero for the short period of about a Million years at a constant rate, and then leveling off non-linearly over extended time before the outward acceleration begins to decrease in a non-linear fashion until it is matched by the gravitational attraction of the matter content of 4D Space and the virtual matter in 3-D Vacuum Space. m = m(4D) + m(Virtual). The rotation of our 3D Universe will become constant once all 3D matter has entered 4D space. As the 3-D Universe tries to expand further it will be pulled inward by its gravitational attraction and will then keep on oscillating about a final radius r<sub>f</sub> while it also keeps on oscillating at right angles to the radius r<sub>f</sub> around final angular velocity ω<sub>f</sub>, until it becomes part of the 4-D Universe. The constant value of the Angular Momentum of our Universe is L = .展开更多
The newly built Compact Laser Plasma Accelerator-Therapy facility at Peking University will deliver 60 J/1 Hz laser pulses with 30 fs duration.Driven by this petawatt laser facility,proton beams with energy up to 200 ...The newly built Compact Laser Plasma Accelerator-Therapy facility at Peking University will deliver 60 J/1 Hz laser pulses with 30 fs duration.Driven by this petawatt laser facility,proton beams with energy up to 200 MeV are expected to be generated for tumor therapy.During high-repetition operation,both prompt radiation and residual radiation may cause safety problems.Therefore,human radiological safety assessment before commissioning is essential.In this paper,we simulate both prompt and residual radiation using the Geant4 and FLUKA Monte Carlo codes with reasonable proton and as-produced electron beam parameters.We find that the prompt radiation can be shielded well by the concrete wall of the experimental hall,but the risk from residual radiation is nonnegligible and necessitates adequate radiation cooling.On the basis of the simulation results,we discuss the constraints imposed by radiation safety considerations on the annual working time,and we propose radiation cooling strategies for different shooting modes.展开更多
We propose an efficient scheme to produce ultrahigh-brightness tens of MeV electron beams by designing a density-tailored plasma to induce a wakefield in the weakly nonlinear regime with a moderate laser energy of 120...We propose an efficient scheme to produce ultrahigh-brightness tens of MeV electron beams by designing a density-tailored plasma to induce a wakefield in the weakly nonlinear regime with a moderate laser energy of 120 mJ.In this scheme,the second bucket of the wakefield can have a much lower phase velocity at the steep plasma density down-ramp than the first bucket and can be exploited to implement longitudinal electron injection at a lower laser intensity,leading to the generation of bright electron beams with ultralow emittance together with low energy spread.Three-dimensional particle-in-cell simulations are carried out and demonstrate that high-quality electron beams with a peak energy of 50 MeV,ultralow emittance of28 nm rad,energy spread of 1%,charge of 4.4 pC,and short duration less than 5 fs can be obtained within a 1-mm-long tailored plasma density,resulting in an ultrahigh six-dimensional brightness B6D,n of2×1017 A/m2/0.1%.By changing the density parameters,tunable bright electron beams with peak energies ranging from 5 to 70 MeV,a small emittance of B0.1 mm mrad,and a low energy spread at a few-percent level can be obtained.These bright MeV-class electron beams have a variety of potential applications,for example,as ultrafast electron probes for diffraction and imaging,in laboratory astrophysics,in coherent radiation source generation,and as injectors for GeV particle accelerators.展开更多
The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration pr...The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence.Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media.When such a jet is injected into the background plasma,theWeibel instability is excited quickly,which leads to the development of plasma turbulence into the nonlinear stage.The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration,where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles.Because of background plasma acceleration,a collisionless electrostatic shock wave is formed,where some pre-accelerated protons are further accelerated when passing through the shock wave front.Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated.For a given background plasma density,the maximum proton energy generally increases both with the density and kinetic energy of the injected jet.Moreover,for a homogeneous background plasma,the proton acceleration via both turbulent fields and collisionless shocks is found to be significant.In the case of an inhomogeneous plasma,the proton acceleration in the plasma turbulence is dominant.Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.展开更多
Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiledcoil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 ...Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiledcoil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 μm·s-1and an attachment duration of about 1 s under physiological conditions. The available experimental data indicate a tradeoff between velocity and attachment duration under various experimental conditions, such as variation of the solution temperature,variation of the strain between the two motor domains, and so on. However, the underlying mechanism of the tradeoff is unknown. Here, the mechanism is explained by a theoretical study of the dynamics of the motor under various experimental conditions, reproducing quantitatively the available experimental data and providing additional predictions. How the various experimental conditions lead to different decreasing rates of attachment duration versus velocity is also explained.展开更多
We present radial velocity(RV)curve templates of RR Lyrae first-overtone(RRc)stars constructed with the Mg I b triplet and Hαlines using time-domain Medium-Resolution Survey spectra of seven RRc stars from Large Sky ...We present radial velocity(RV)curve templates of RR Lyrae first-overtone(RRc)stars constructed with the Mg I b triplet and Hαlines using time-domain Medium-Resolution Survey spectra of seven RRc stars from Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST)Data Release 9.Additionally,we derive the relation between the stellar RV curve amplitudes and g-band light curve amplitudes from Zwicky Transient Facility(ZTF)public survey.For those RRc stars without ZTF g-band light curves,we provide the conversions from the light curve amplitudes in ZTF r-and i-bands,Gaia G-band,and V-band from the All-Sky Automated Survey for Supernovae to those in ZTF g-band.We validate our RV curve templates using the RRc star SV Scl and find the uncertainties of systemic RV are less than 2.11 km s~(-1)and 6.08 km s~(-1)based on the Mg I b triplet and Hαlines,respectively.We calculate the systemic RVs of 30 RRc stars using the RV curve templates constructed with the Mg I b triplet and Hαlines and find the systemic RVs are comparable with each other.This RV curve template will be particularly useful for obtaining the systemic RV of RRc using the LAMOST spectroscopy.展开更多
Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating...Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons while also improving picking accuracy. The conventional method of velocity picking from a semblance volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic tracking process across different semblance panels can integrate information from nearby gathers effectively while maintaining computational efficiency. First, we employ accelerated density clustering on the velocity spectrum to discern cluster centers without the requirement for prior knowledge regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the main subsurface structures. Second, our proposed method tracks key points within the semblance volume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked points to construct the final velocity model. Our synthetic data example demonstrates that our proposed algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the performances of the clustering method(CM), the proposed tracking method(TM), and the variational method(VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers superior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced computational cost.展开更多
文摘Introduction:Rotatory chair testing has been used to evaluate horizontal canal function.Frequently used tests include sinusoidal harmonic acceleration test(SHAT)and velocity step test(VST).Objectives:Assessment of age effect on the SHAT and VST and assessment of test-retest reliability of the parameters of those two tests.Methods:A prospective study was performed on 100 subjects with no ear or vestibular complaints and normal vestibular evaluation.They were divided into two groups;Group A:below 50 years of age and Group B:50 years of age or above.SHAT was presented at frequencies 0.02,0.04,0.08,0.16,0.32,0.64 Hz with a peak velocity of 60°/s.VST was performed using a maximum velocity of 100°/s with acceleration and deceleration of 200°/s2.Thirty subjects were tested twice to assess reliability.Results:Study participants ranged in age from 20 to 67 years.Regarding group A,the mean age was30.92±7.31 and 55.36±4.61 for group B.No significant differences were found in SHAT parameters between the two groups.As well,there was no significant difference in VST per-rotatory time constant,however,post-rotatory time constant was significantly longer for Group B(P value<0.05).Intraclass correlation coefficient(ICC)values showed moderate to good reliability(ICC 0.5800.818)for SHAT parameters for the lower frequencies and indicated moderate reliability for VST time constant(ICC 0.5090.652).Conclusions:Age has no significant effect on the parameters of SHAT and VST.Test-retest reliability is generally good for both tests.
基金supported jointly by the National Natural Science Foundation Fund of China (No.40930418)Chinese government-funded scientific program of the Sino Probe Deep Exploration in China (SinoProbe03)the National Science and Technology Support Program Project (No. 2011BAB04B01)
文摘Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.
文摘Hamilton Monte Carlo (HMC)方法是一种常用的快速抽样方法.在对哈密顿方程进行抽样时,HMC方法使用Leapfrog积分器,这可能造成方程的位置及动量的迭代值在时间上不同步,其产生的误差会降低抽样效率及抽样结果的稳定性.为此,本文提出了IHMC(Improved HMC)方法,该方法用Velocity Verlet积分器替代Leapfrog积分器,每次迭代时都计算两变量在同一时刻的值.为验证方法的效果,本文进行了两个实验,一个是将该方法应用于非对称随机波动率模型(RASV模型)的参数估计,另一个是将方法应用于方差伽马分布的抽样,结果显示:IHMC方法比HMC方法的效率更高、结果更稳定.
基金supported by the Air Force Office of Scientific Research Grant No.FA9550-17-1-0264supported by the DOE,Office of Science,Fusion Energy Sciences under Contract No.DE-SC0021125+2 种基金supported by the U.S.Department of Energy Grant No.DESC0011617.D.A.Jarozynski,E.Brunetti,B.Ersfeld,and S.Yoffe would like to acknowledge support from the U.K.EPSRC(Grant Nos.EP/J018171/1 and EP/N028694/1)the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.871124 Laserlab-Europe and EuPRAXIA(Grant No.653782)funded by the N8 research partnership and EPSRC(Grant No.EP/T022167/1).
文摘An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities.This scheme is called a laser wakefield accelerator.In this work,we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields.We find that a 10-cm-long,nanoparticle-assisted laser wakefield accelerator can generate 340 pC,10±1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence.It can also produce bunches with lower energies in the 4–6 GeV range.
基金supported by the National Natural Science Foundation of China(Grant No.42004030)Basic Scientific Fund for National Public Research Institutes of China(Grant No.2022S03)+1 种基金Science and Technology Innovation Project(LSKJ202205102)funded by Laoshan Laboratory,and the National Key Research and Development Program of China(2020YFB0505805).
文摘The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.
文摘Floods are one of the most serious natural disasters that can cause huge societal and economic losses.Extensive research has been conducted on topics like flood monitoring,prediction,and loss estimation.In these research fields,flood velocity plays a crucial role and is an important factor that influences the reliability of the outcomes.Traditional methods rely on physical models for flood simulation and prediction and could generate accurate results but often take a long time.Deep learning technology has recently shown significant potential in the same field,especially in terms of efficiency,helping to overcome the time-consuming associated with traditional methods.This study explores the potential of deep learning models in predicting flood velocity.More specifically,we use a Multi-Layer Perceptron(MLP)model,a specific type of Artificial Neural Networks(ANNs),to predict the velocity in the test area of the Lundesokna River in Norway with diverse terrain conditions.Geographic data and flood velocity simulated based on the physical hydraulic model are used in the study for the pre-training,optimization,and testing of the MLP model.Our experiment indicates that the MLP model has the potential to predict flood velocity in diverse terrain conditions of the river with acceptable accuracy against simulated velocity results but with a significant decrease in training time and testing time.Meanwhile,we discuss the limitations for the improvement in future work.
基金supported by the Czech Ministry of Education,Youth and Sports(Project No.CZ.02.2.69/0.0/0.0/18_053/0016980)the Grant Agency of the Czech Republic(Grant No.GM23-05027M).
文摘Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.
基金funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.871124 Laserlab-Europeby Grant No.ANR-17-CE30-0026-Pinnacle from the Agence Nationale de la Recherche.
文摘We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this numerical work,we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases:without tailoring,by tailoring only the entrance side of the picosecond laser,and by tailoring both sides of the gas jet.Without tailoring,the acceleration is transverse to the laser axis,with a low-energy exponential spectrum,produced by Coulomb explosion.When the front side of the gas jet is tailored,a forward acceleration appears,which is significantly enhanced when both the front and back sides of the plasma are tailored.This forward acceleration produces higher-energy protons,with a peaked spectrum,and is in good agreement with the mechanism of collisionless shock acceleration(CSA).The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam.The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring.Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet.These parameters are in good agreement with those required for CSA.
基金supported by the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.787539)funding from EPRSC(Grant Nos.EP/E035728,EP/C003586,and EP/P010059/1)supported by the National Sciences and Engineering Research Council of Canada(NSERC)and Compute Canada(Job:pve-323-ac,PA).
文摘Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.
基金supported by the National Natural Science Foundation of China(Grant Nos.11991074,11975154,12135009,12005287,and 12225505)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050100).
文摘A scheme for a quasi-monoenergetic high-flux neutron source with femtosecond duration and highly anisotropic angular distribution is proposed.This scheme is based on bulk acceleration of deuteron ions in an optical trap or density grating formed by two counter-propagating laser pulses at an intensity of-10^(16)W~cm^(2)in a near-critical-density plasma.The deuterons are first pre-accelerated to an energy of tens of keV in the ambipolar fields formed in the optical trap.Their energy is boosted to the MeV level by another one or two laser pulses at an intensity of-10^(20)W~cm^(2),enabling fusion reactions to be triggered with high efficiency.In contrast to previously proposed pitcher–catcher configurations,our scheme can provide spatially periodic acceleration structures and effective collisions between deuterons inside the whole target volume.Subsequently,neutrons are generated directly inside the optical trap.Our simulations show that neutron pulses with energy 2–8 MeV,yield 10^(18)–10^(19)n/s,and total number 106–107 in a duration-400 fs can be obtained with a 25μm target.Moreover,the neutron pulses exhibit unique angularly dependent energy spectra and flux distributions,predominantly along the axis of the energy-boosting lasers.Such microsize femtosecond neutron pulses may find many applications,such as high-resolution fast neutron imaging and nuclear physics research.
文摘The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the accelerated expansion of the 3-D Universe, as has already been confirmed experimentally being awarded the 2011 Nobel Prize in Physics. Theoretical calculations can estimate further to indicate the true nature of the acceleration;that the outward acceleration is due to the rotation of the Universe caused by Dark Energy from the Void, that the acceleration is non-linear, initially increasing from zero for the short period of about a Million years at a constant rate, and then leveling off non-linearly over extended time before the outward acceleration begins to decrease in a non-linear fashion until it is matched by the gravitational attraction of the matter content of 4D Space and the virtual matter in 3-D Vacuum Space. m = m(4D) + m(Virtual). The rotation of our 3D Universe will become constant once all 3D matter has entered 4D space. As the 3-D Universe tries to expand further it will be pulled inward by its gravitational attraction and will then keep on oscillating about a final radius r<sub>f</sub> while it also keeps on oscillating at right angles to the radius r<sub>f</sub> around final angular velocity ω<sub>f</sub>, until it becomes part of the 4-D Universe. The constant value of the Angular Momentum of our Universe is L = .
基金supported by the National Natural Science Foundation of China(Grant No.12205008)the NSFC Innovation Group Project(Grant No.11921006)+1 种基金the National Grand Instrument Project(Grant Nos.2019YFF01014402 and 2019YFF01014403)the National Science Fund for Distinguished Young Scholars(Grant No.12225501).
文摘The newly built Compact Laser Plasma Accelerator-Therapy facility at Peking University will deliver 60 J/1 Hz laser pulses with 30 fs duration.Driven by this petawatt laser facility,proton beams with energy up to 200 MeV are expected to be generated for tumor therapy.During high-repetition operation,both prompt radiation and residual radiation may cause safety problems.Therefore,human radiological safety assessment before commissioning is essential.In this paper,we simulate both prompt and residual radiation using the Geant4 and FLUKA Monte Carlo codes with reasonable proton and as-produced electron beam parameters.We find that the prompt radiation can be shielded well by the concrete wall of the experimental hall,but the risk from residual radiation is nonnegligible and necessitates adequate radiation cooling.On the basis of the simulation results,we discuss the constraints imposed by radiation safety considerations on the annual working time,and we propose radiation cooling strategies for different shooting modes.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11974251,12105180,12074397,11904377,and 12005137)the Innovation Program of Shanghai Municipal Education Commission(Grant No.2021-01-07-00-02-E00118)the National Key Research and Development Program(Grant No.2023YFA1406804).
文摘We propose an efficient scheme to produce ultrahigh-brightness tens of MeV electron beams by designing a density-tailored plasma to induce a wakefield in the weakly nonlinear regime with a moderate laser energy of 120 mJ.In this scheme,the second bucket of the wakefield can have a much lower phase velocity at the steep plasma density down-ramp than the first bucket and can be exploited to implement longitudinal electron injection at a lower laser intensity,leading to the generation of bright electron beams with ultralow emittance together with low energy spread.Three-dimensional particle-in-cell simulations are carried out and demonstrate that high-quality electron beams with a peak energy of 50 MeV,ultralow emittance of28 nm rad,energy spread of 1%,charge of 4.4 pC,and short duration less than 5 fs can be obtained within a 1-mm-long tailored plasma density,resulting in an ultrahigh six-dimensional brightness B6D,n of2×1017 A/m2/0.1%.By changing the density parameters,tunable bright electron beams with peak energies ranging from 5 to 70 MeV,a small emittance of B0.1 mm mrad,and a low energy spread at a few-percent level can be obtained.These bright MeV-class electron beams have a variety of potential applications,for example,as ultrafast electron probes for diffraction and imaging,in laboratory astrophysics,in coherent radiation source generation,and as injectors for GeV particle accelerators.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12135009,11991074,11975154,and 12005287).
文摘The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence.Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media.When such a jet is injected into the background plasma,theWeibel instability is excited quickly,which leads to the development of plasma turbulence into the nonlinear stage.The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration,where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles.Because of background plasma acceleration,a collisionless electrostatic shock wave is formed,where some pre-accelerated protons are further accelerated when passing through the shock wave front.Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated.For a given background plasma density,the maximum proton energy generally increases both with the density and kinetic energy of the injected jet.Moreover,for a homogeneous background plasma,the proton acceleration via both turbulent fields and collisionless shocks is found to be significant.In the case of an inhomogeneous plasma,the proton acceleration in the plasma turbulence is dominant.Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.
文摘Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiledcoil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 μm·s-1and an attachment duration of about 1 s under physiological conditions. The available experimental data indicate a tradeoff between velocity and attachment duration under various experimental conditions, such as variation of the solution temperature,variation of the strain between the two motor domains, and so on. However, the underlying mechanism of the tradeoff is unknown. Here, the mechanism is explained by a theoretical study of the dynamics of the motor under various experimental conditions, reproducing quantitatively the available experimental data and providing additional predictions. How the various experimental conditions lead to different decreasing rates of attachment duration versus velocity is also explained.
基金supported by the National Key Research and Development Program of China(2023YFA1608100)the National Natural Science Foundation of China(NSFC,grant Nos.12090044,11833006 and 12303023)+3 种基金the science research grants from the China Manned Space Project including the CSST Milky Way and Nearby Galaxies Survey on Dust and Extinction Project CMS-CSST-2021-A09 and No.CMS-CSST-2021-A08.G.C.LHubei Provincial Natural Science Foundation with grant No.2023AFB577the Key Laboratory Fund of Ministry of Education under grant No.QLPL2022P01National Natural Science Foundation of China(NSFC,Grant No.U1731108)。
文摘We present radial velocity(RV)curve templates of RR Lyrae first-overtone(RRc)stars constructed with the Mg I b triplet and Hαlines using time-domain Medium-Resolution Survey spectra of seven RRc stars from Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST)Data Release 9.Additionally,we derive the relation between the stellar RV curve amplitudes and g-band light curve amplitudes from Zwicky Transient Facility(ZTF)public survey.For those RRc stars without ZTF g-band light curves,we provide the conversions from the light curve amplitudes in ZTF r-and i-bands,Gaia G-band,and V-band from the All-Sky Automated Survey for Supernovae to those in ZTF g-band.We validate our RV curve templates using the RRc star SV Scl and find the uncertainties of systemic RV are less than 2.11 km s~(-1)and 6.08 km s~(-1)based on the Mg I b triplet and Hαlines,respectively.We calculate the systemic RVs of 30 RRc stars using the RV curve templates constructed with the Mg I b triplet and Hαlines and find the systemic RVs are comparable with each other.This RV curve template will be particularly useful for obtaining the systemic RV of RRc using the LAMOST spectroscopy.
基金supported by the Basic Scientific Program of the Institute of Atmospheric Physics supporting the 14th Five-Year Plan[Grant No.7-224151]Youth Innovation Team of China Meteorological Administration[Grant No.CMA2023QN10]+4 种基金the National Natural Science Foundation of China[Grant Nos.42175010,41965010,U223321842275010]Beijing Municipal Science and Technology Commission[Grant No.Z221100005222012]the Department of Science and Technology of Hebei Province[Grant No.22375404D]the Open subjects of the Key Open Laboratory of Cloud Physical Environment,China Meteorological Administration[Grant No.2020Z00715]。
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFA0702501in part by NSFC under Grant 41974126,41674116 and 42004101。
文摘Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons while also improving picking accuracy. The conventional method of velocity picking from a semblance volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic tracking process across different semblance panels can integrate information from nearby gathers effectively while maintaining computational efficiency. First, we employ accelerated density clustering on the velocity spectrum to discern cluster centers without the requirement for prior knowledge regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the main subsurface structures. Second, our proposed method tracks key points within the semblance volume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked points to construct the final velocity model. Our synthetic data example demonstrates that our proposed algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the performances of the clustering method(CM), the proposed tracking method(TM), and the variational method(VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers superior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced computational cost.