The vibrator plate is the link between the vibroseis vehicle and the earth,as well as the core com-ponent of the vibrator vehicle.In this paper,the coupling effect between the vibrator plate and the earth is an-alyzed...The vibrator plate is the link between the vibroseis vehicle and the earth,as well as the core com-ponent of the vibrator vehicle.In this paper,the coupling effect between the vibrator plate and the earth is an-alyzed from two aspects of reaction tooth arrangement and reaction tooth conical angle,and three groups of experimental models are optimized and designed.The model construction and numerical analysis of the shear wave vibroseis vibrator plate are carried out with ANSYS software.The motion law between the vibration plate and the earth at work was studied,the strain energy of the three experimental models in operation,the maximum displacement of particle at the same position and other reference indices were compared and ana-lyzed,with 28 conical reaction teeth were arranged on both sides.The coupling effect between the vibration plate and the earth was best when the tooth angle was 60°.Compared with the toothless vibration plate,the energy efficiency is improved by about 20%,and the coupling effect between the vibrator plate and the earth is effectively enhanced.It is found that the coupling effect is enhanced through increasing the number of reac-tion teeth of the vibration plate by increasing the coupling area between the vibration plate and the earth.展开更多
The slip-sweep technique is one of the high-efficiency, high-fidelity, and environmental vibroseis seismic prospecting techniques which consists of a vibrator group sweeping without waiting for the previous group's s...The slip-sweep technique is one of the high-efficiency, high-fidelity, and environmental vibroseis seismic prospecting techniques which consists of a vibrator group sweeping without waiting for the previous group's sweep to terminate. The cycle time can be reduced drastically and hence the production efficiency can be increased significantly but harmonic distortion of one sweep will leak into the record of the other sweep. In this paper, we propose an anti-correlation method for removing harmonic distortion in vibroseis data. This method is based on decomposition of the ground force signal into fundamental and harmonic components. Then the corresponding anti-correlation operator can be computed to estimate the energy of each harmonic after correlating the vibroseis data with the corresponding harmonic component. Finally, the vibroseis harmonic noise to be removed can be obtained by subtracting the extracted harmonic noise from the traces of the previous group's sweep. The advantage of the proposed method is that it can process both uncorrelated and correlated vibroseis seismic data. Moreover, the algorithm is simple, stable, and computationally fast. Especially, the significant contribution of this method is a considerable reduction in the harmonic without any alteration of the desired signals. The method was tested on both synthetic and field data sets to validate the good harmonic noise suppression results.展开更多
Few seismic exploration work was carried out in Tibetan Plateau due to the characteristics of alpine hypoxia and harsh environmental protection needs.Complex near surface geological conditions,especially the signal sh...Few seismic exploration work was carried out in Tibetan Plateau due to the characteristics of alpine hypoxia and harsh environmental protection needs.Complex near surface geological conditions,especially the signal shielding and static correction of permafrost make the quality of seismic data is not ideal,the signal to noise ratio(SNR)is low,and deep target horizon imaging is difficult.These data cannot provide high quality information for oil and gas geological survey and structural sedimentary research in the area.To solve the issue of seismic exploration in Tibetan Plateau,this test used low frequency vibroseis wide-line and high-density acquisition scheme.In view of the actual situation of the study area,the terrain,the source and the diff erent observation system were simulated,and the processing technique was adopted to improve the quality of seismic data.Low-frequency components with a minimum of 1.5Hz of vibroseis ensure the deep geological target imaging quality in the area,the seismic profi le wave group is clear,and the SNR is relatively high,which can meet the needs of oil and gas exploration.Seismic data can provide the support for the development of oil and gas survey in the Tibet plateau.展开更多
The double-phase-shift filtering method,which is based on the traditional purephase-shift filtering method,is a novel approach to harmonic elimination that can be applied to more complicated signals such as white nois...The double-phase-shift filtering method,which is based on the traditional purephase-shift filtering method,is a novel approach to harmonic elimination that can be applied to more complicated signals such as white noise and slip-sweep.Nonetheless,any type of phase-shift filtering method necessitates a relationship between the frequency of fundamental sweep and time,which may cost necessitate an enormous amount of human and physical resources to achieve inaccurate results with low efficiency.This paper combines deep learning with harmonic elimination to produce a double-phase-shift filtering method based on AR2UNet,a type of U-Net with attention gates structure and recurrent residual blocks for improving accuracy and function while simplifying computational complexity.The input of the AR2UNet structure in this paper is seismic data of slip-sweep signals in vibroseis,and the output is signal frequency variation with the time of the fundamental waves,which are required to eliminate the harmonic waves and adjacent signals using a double-phase-shift method to obtain the fundamental sweep.The training sets and test sets are formed by forward models,and a Log-Cosh loss function is used to monitor the process,during which the results of AR2U-Net and traditional U-Net are compared to demonstrate the eminent function of AR2UNet.Following that,the outcomes’Log-Cosh loss functions and accuracy are also compared to validate the conclusion.AR2U-Net,when applied to raw data and combined with the doublephase-shift method,tends to polish the filtering effects and is worth promoting.展开更多
基金Supported by National Key Research and Development Program(No.20220101172JC).
文摘The vibrator plate is the link between the vibroseis vehicle and the earth,as well as the core com-ponent of the vibrator vehicle.In this paper,the coupling effect between the vibrator plate and the earth is an-alyzed from two aspects of reaction tooth arrangement and reaction tooth conical angle,and three groups of experimental models are optimized and designed.The model construction and numerical analysis of the shear wave vibroseis vibrator plate are carried out with ANSYS software.The motion law between the vibration plate and the earth at work was studied,the strain energy of the three experimental models in operation,the maximum displacement of particle at the same position and other reference indices were compared and ana-lyzed,with 28 conical reaction teeth were arranged on both sides.The coupling effect between the vibration plate and the earth was best when the tooth angle was 60°.Compared with the toothless vibration plate,the energy efficiency is improved by about 20%,and the coupling effect between the vibrator plate and the earth is effectively enhanced.It is found that the coupling effect is enhanced through increasing the number of reac-tion teeth of the vibration plate by increasing the coupling area between the vibration plate and the earth.
基金supported by the Sinopec Service Company and China National Petroleum Corporation
文摘The slip-sweep technique is one of the high-efficiency, high-fidelity, and environmental vibroseis seismic prospecting techniques which consists of a vibrator group sweeping without waiting for the previous group's sweep to terminate. The cycle time can be reduced drastically and hence the production efficiency can be increased significantly but harmonic distortion of one sweep will leak into the record of the other sweep. In this paper, we propose an anti-correlation method for removing harmonic distortion in vibroseis data. This method is based on decomposition of the ground force signal into fundamental and harmonic components. Then the corresponding anti-correlation operator can be computed to estimate the energy of each harmonic after correlating the vibroseis data with the corresponding harmonic component. Finally, the vibroseis harmonic noise to be removed can be obtained by subtracting the extracted harmonic noise from the traces of the previous group's sweep. The advantage of the proposed method is that it can process both uncorrelated and correlated vibroseis seismic data. Moreover, the algorithm is simple, stable, and computationally fast. Especially, the significant contribution of this method is a considerable reduction in the harmonic without any alteration of the desired signals. The method was tested on both synthetic and field data sets to validate the good harmonic noise suppression results.
基金This work was supported by Nation key R&D program(No.2016YFC060110305)Geological and mineral investigation and evaluation special project(No.DD20160160 and No.DD20160181).
文摘Few seismic exploration work was carried out in Tibetan Plateau due to the characteristics of alpine hypoxia and harsh environmental protection needs.Complex near surface geological conditions,especially the signal shielding and static correction of permafrost make the quality of seismic data is not ideal,the signal to noise ratio(SNR)is low,and deep target horizon imaging is difficult.These data cannot provide high quality information for oil and gas geological survey and structural sedimentary research in the area.To solve the issue of seismic exploration in Tibetan Plateau,this test used low frequency vibroseis wide-line and high-density acquisition scheme.In view of the actual situation of the study area,the terrain,the source and the diff erent observation system were simulated,and the processing technique was adopted to improve the quality of seismic data.Low-frequency components with a minimum of 1.5Hz of vibroseis ensure the deep geological target imaging quality in the area,the seismic profi le wave group is clear,and the SNR is relatively high,which can meet the needs of oil and gas exploration.Seismic data can provide the support for the development of oil and gas survey in the Tibet plateau.
基金supported by the National Science and Technology Major Project of China(No.2016ZX05003-003).
文摘The double-phase-shift filtering method,which is based on the traditional purephase-shift filtering method,is a novel approach to harmonic elimination that can be applied to more complicated signals such as white noise and slip-sweep.Nonetheless,any type of phase-shift filtering method necessitates a relationship between the frequency of fundamental sweep and time,which may cost necessitate an enormous amount of human and physical resources to achieve inaccurate results with low efficiency.This paper combines deep learning with harmonic elimination to produce a double-phase-shift filtering method based on AR2UNet,a type of U-Net with attention gates structure and recurrent residual blocks for improving accuracy and function while simplifying computational complexity.The input of the AR2UNet structure in this paper is seismic data of slip-sweep signals in vibroseis,and the output is signal frequency variation with the time of the fundamental waves,which are required to eliminate the harmonic waves and adjacent signals using a double-phase-shift method to obtain the fundamental sweep.The training sets and test sets are formed by forward models,and a Log-Cosh loss function is used to monitor the process,during which the results of AR2U-Net and traditional U-Net are compared to demonstrate the eminent function of AR2UNet.Following that,the outcomes’Log-Cosh loss functions and accuracy are also compared to validate the conclusion.AR2U-Net,when applied to raw data and combined with the doublephase-shift method,tends to polish the filtering effects and is worth promoting.