This paper is concerned with the pressureless Euler equations with viscous and flux perturbations.The existence of Riemann solutions to the pressureless Euler equations with viscous and flux perturbations is obtained....This paper is concerned with the pressureless Euler equations with viscous and flux perturbations.The existence of Riemann solutions to the pressureless Euler equations with viscous and flux perturbations is obtained.We show the stability of the delta wave of the pressureless Euler equations to the perturbations;that is,the limit solution of the pressureless Euler equations with viscous and flux perturbations is the delta wave solution of the pressureless Euler equations as the viscous and flux perturbation simultaneously vanish in the case u_(-)> u_(+).展开更多
The solitary waves of a viscous plasma confined in a cuboid under the three types of boundary condition are theoretically investigated in the present paper.By introducing a threedimensional rectangular geometry and em...The solitary waves of a viscous plasma confined in a cuboid under the three types of boundary condition are theoretically investigated in the present paper.By introducing a threedimensional rectangular geometry and employing the reductive perturbation theory,a quasi-Kd V equation is derived in the viscous plasma and a damping solitary wave is obtained.It is found that the damping rate increases as the viscosity coefficient increases,or increases as the length and width of the rectangle decrease,for all kinds of boundary condition.Nevertheless,the magnitude of the damping rate is dominated by the types of boundary condition.We thus observe the existence of a damping solitary wave from the fact that its amplitude disappears rapidly for a → 0and b → 0,or ν→ +∞.展开更多
The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ...The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ciliated tips in the presence of heat and mass transfer. The effects of viscous dissipation are also considered. The flow equations of non-Newtonian fluid for the two-dimensional tube in cylindrical coordinates are simplified using the low Reynolds number and long wave-length approximations. The main equations for Jeffrey six constant fluid are considered in cylindrical coordinates system. The resulting nonlinear problem is solved using the regular perturbation technique in terms of a variant of small dimensionless parameter α. The results of the solutions for velocity, temperature and concentration field are presented graphically. B_k is Brinkman number, ST is soret number, and SH is the Schmidth number. Outcome for the longitudinal velocity, pressure rise, pressure gradient and stream lines are represented through graphs. In the history, the viscous-dissipation effect is usually represented by the Brinkman number.展开更多
文摘This paper is concerned with the pressureless Euler equations with viscous and flux perturbations.The existence of Riemann solutions to the pressureless Euler equations with viscous and flux perturbations is obtained.We show the stability of the delta wave of the pressureless Euler equations to the perturbations;that is,the limit solution of the pressureless Euler equations with viscous and flux perturbations is the delta wave solution of the pressureless Euler equations as the viscous and flux perturbation simultaneously vanish in the case u_(-)> u_(+).
基金supported by National Natural Science Foundation of China(Nos.91026005,11275156,11047010,61162017)
文摘The solitary waves of a viscous plasma confined in a cuboid under the three types of boundary condition are theoretically investigated in the present paper.By introducing a threedimensional rectangular geometry and employing the reductive perturbation theory,a quasi-Kd V equation is derived in the viscous plasma and a damping solitary wave is obtained.It is found that the damping rate increases as the viscosity coefficient increases,or increases as the length and width of the rectangle decrease,for all kinds of boundary condition.Nevertheless,the magnitude of the damping rate is dominated by the types of boundary condition.We thus observe the existence of a damping solitary wave from the fact that its amplitude disappears rapidly for a → 0and b → 0,or ν→ +∞.
文摘The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ciliated tips in the presence of heat and mass transfer. The effects of viscous dissipation are also considered. The flow equations of non-Newtonian fluid for the two-dimensional tube in cylindrical coordinates are simplified using the low Reynolds number and long wave-length approximations. The main equations for Jeffrey six constant fluid are considered in cylindrical coordinates system. The resulting nonlinear problem is solved using the regular perturbation technique in terms of a variant of small dimensionless parameter α. The results of the solutions for velocity, temperature and concentration field are presented graphically. B_k is Brinkman number, ST is soret number, and SH is the Schmidth number. Outcome for the longitudinal velocity, pressure rise, pressure gradient and stream lines are represented through graphs. In the history, the viscous-dissipation effect is usually represented by the Brinkman number.